

ICAR-NBAIR Publication: 01/2023

ICAR – NATIONAL BUREAU OF AGRICULTURAL INSECT RESOURCES P.B. No. 2491, H.A. Farm Post, Bellary Road, Hebbal Bengaluru~560024

CONTENTS

PART – B

All India Coordinated Research Project on Biological Control of Crop Pests

XIX.	Historical Background	265
XX.	Mandate and Objectives	265
XXI.	Organization and Structure	266
XXII.	ATR for specific recommendation of each AICRP-BC	269
	centres of the previous QRT	
XXIII.	Research programmes 2017-2022	282
XXIV.	Highlights of Research Accomplishments during the	291
	period 2017-2022	
XXV.	Priorities, programmes and research projects	302
XXVI.	Human Resource Development efforts	355
XXVII.	Publications	379
XXVIII.	Budget	380
XXIX.	SWOT Analysis	381
XXX.	Infrastructure and facilities developed	399
XXXI.	Collaboration with Inter-Institutional and	403
	Interdisciplinary linkages	
XXXII.	Extension activities	406
XXXIII.	Distribution of extension material and social media	460
	presents	
XXXIV.	Brief report and impact of the TSP programme	461
XXXV.	Brief report and impact on initiatives of National	466
	priorities	
XXXVI.	Significant outcome	471
XXXVII.	Success stories	478
XXXVIII.	Quantity of bioagents produced and area covered	481
XXXIX.	Strategic plan	487

All India Coordinated Research Project on Biological Control of Crop Pests

XIX. Historical Background

The National Agricultural Policy has laid special emphasis on Integrated Pest Management (IPM) and use of biocontrol agents in order to minimize the indiscriminate and injudicious use of chemical pesticides, which is also the cardinal principle of the Government of India on plant protection. The IPM implementation at national level has proved effective not only in reducing pesticide usage, but also in reducing pest induced losses in the country, amply evidencing a bright future for the successful use of biological control agents in pest control programmes. India is rich in natural enemy biodiversity and facilitated as many as 27 natural enemies of Indian origin being established in other countries for crop pest suppression. Thus, there is ample opportunity in India for effective management of pests, diseases and weeds through effective utilization of its vast natural enemy fauna.

Biological control of crop pests and weeds made its humble beginning with the launching of the All India Coordinated Research Project (AICRP) in 1977 at Bangalore with full financial support by the Department of Science and Technology, Government of India. Recognition of the importance of biological control came during the VIII plan with the creation of Biological Control Centre (BCC) which was functioning under the administrative control of NCIPM, Faridabad. A greater thrust for planned biological control programme started in 1987 when ICAR took over the erstwhile Commonwealth Institute of Biological Control (CIBC), its insect collections, physical facilities including the prime land on Bellary Road on NH-7, Bangalore. The BCC which was functioning as the PC Cell of AICRP on Biological Control of Crop Pests and Weeds was upgraded to the Project Directorate of Biological control (PDBC) with headquarters at Bangalore. The Directorate started functioning from 19th October 1993 with six laboratories and 16 AICRP centres. In the XI plan, the PDBC was renamed and reoriented into National Bureau of Agriculturally Important Insects (NBAII) on 25th June, 2009 and the mandate was redefined and in the 12th five year plan, it was rechristened to the present name (ICAR - National Bureau of Agricultural Insect Resources) with effect from 24th September, 2014. The AICRP-BC has 36 centres (11 regular centres and 25 Voluntary centres).

XX. Mandate and Objectives

✤ Mandate

• Promotion of biological control as a component of integrated pest and disease management in agricultural and horticultural crops for sustainable crop production. Demonstration of usefulness of biocontrol in IPM in farmers' fields.

Objectives

- Development of effective biocontrol agents for use in biological suppression of crop pests and diseases.
- Evaluation of various methods of biological control in multi-location field trials.
- Develop biointensive integrated pest management strategies for cotton, rice, sugarcane, pulses, oilseeds, potato, coconut and a few selected fruits and vegetables and crop pests of protected cultivation.
- Demonstration of usefulness of usefulness of biocontrol in IPM in farmer's fields.

XXI. 3. Organization and Structure

A. North West Zone

- 1. AAU, Anand
- 2. G.B. Pant University of Agriculture & Technology, Pantnagar
- 3. PAU, Ludhiana
- 4. MPUAT, Udaipur
- 5. CISH, Lucknow
- 6. IIVR, Varanasi

B. North East Zone

- 1. AAU, Jorhat
- 2. CAU, Pasighat
- 3. College of Agriculture, Lembucherra, Agartala

C. North Central Zone

- 1. MPKV, Pune
- 2. OUAT, Bhubaneswar
- 3. UBKV, Pundibari
- 4. NRRI, Cuttack
- 5. PDKV, Akola

D. North Zone

- 1. NCIPM, New Delhi
- 2. SKUAST, Srinagar
- 3. SKUAST Jammu
- 4. YSPUHF, Solan

E. South Zone

- 1. ANGRAU, Anakapalle
- 2. KAU, Thrissur
- 3. PJTSAU, Hyderabad
- 4. TNAU, Coimbatore
- 5. UAS, Raichur
- 6. CPCRI, Kayangulam
- 7. IIHR, Bangalore
- 8. IIMR (Millets), Hyderabad
- 9. IIRR, Hyderabad
- 10. IGKV, Raipur
- 11. KAU, Kumarakom
- 12. KAU, Vellayani
- 13. UHAS, Shivamogga,
- 14. DRYSRUH, Tirupati
- 15. ICAR-SBI, Coimbatore
- 16. WNC-ICAR-IIMR, Hyderabad
- 17. NIPHM, Hyderabad
- 18. DRYSRUH, Ambajapeta

Sactioned strength		2017 to 2018 &	2019 to 2020 &	No of post
		2018 to 2019	2020 to 2022	vacant
Scientific	Scientist	12	10	0
	Senior Scientist	8	6	0
	Principal Scientist	2	1	0
Technical Cadre		27	4	0
Total		49	21	0

Centres	Principal Scientist	Senior Scientist	Scientist	Technical	Total
AAU, ANAND	1	0	1	0	2
AAU, JORHAT	0	0	2	0	2
RARS- ANAKAPALLI	0	0	1	0	1

PJSTAU, TELANGANA	0	1	0	0	1
DR.YSPUH&F, SOLAN	0	1	1	0	2
GBPUAT, P'NAGAR	0	0	1	1	2
KAU, THRISSURE	0	0	1	1	2
MPKV, PUNE	0	1	1	0	2
PAU, LUDHIANA	0	1	1	1	3
SKUAST, SRINAGAR	0	1	1	0	2
TNAU, COIMBATORE	0	1	0	1	2
Total	1	6	10	4	21

XXII. ATR for the specific recommendations for your AICRP-BC centre of the previous QRT (refer previous QRT report 2012-17)

Sl.No	Centres	Recommendations	Action taken
1.	AAU, Anand	Vice Chancellor AAU expressed interest in providing funds for generating toxicological data for the NBAIR isolates. To explore the possibility of preparing a joint MOU between AAU and NBAIR for the same. Standard chemical check to be included in all experiments.	ICAR-NBAIR has generated the toxicological data for their microbial biopesticide isolates on their own. However, MoU has been made between AAU-Anand and NBAIR for the licensing of the technology of mass production of <i>Pseudomonas</i> <i>fluorescens</i> PFDWD and <i>Metarhizium</i> <i>anisopliae</i> Ma-4. Implemented
		Quantification of spider diversity and its predatory potential and relationship with pest incidence are to be	Spider diversity has been quantified in rice growing fields in the village Tarapur, Dist. Anand and observed the predatory potential in relation to incidence of pest rice leaf roller.

		in also de d	
		Production of macrobials to be intensified.	The centre has intensified the production of macrobials. During the period, centre has produced Tricho-cards – 5000/annum
2.	KAU, Thrissur	Promosing microbials may be supplied/distributed to farmers on a non commercial basis (free of cost).	Recommendation complied with (Supplied to tribal famers in Thissur and Wayanad districts under TSP)
		Attempts to be made to obtain licence for supplied bio-agents.	Steps for registration in progress
		Technical bulletins/brochures to be brought out in local languages for wider dissemination of the value of bio-control agents.	A short video on biological control in local language has been prepared.
		Enough budget provision to be made for meeting the registration costs for registration of biopesticides. Financial support for popularizing providing biocontrol agents may be sought from funding agencies viz. RKVY and MOEF.	Budgetary support for meeting the registration costs obtained from GoK under RKVY and plan funds. Project on popularisation of bioagents completed under ATMA scheme of DoA
3.	PAU, Lhudiana	Success stories on Organic Basmathi, Maize and Sugarcane to be disseminated through booklets and website	Three folders namely (i) Biological Control of Borers in Sugarcane; (ii) Biointensive Integrated Pest Management inorganic Rice; and (iii) Biocontrol technologies in PAU Package of Practices were published and disseminated. The softcopies were also sent to ICAR-NBAIR for AICRP Website One e-folder on "Mass production and utilization of Trichogramma for the bio-suppression of insect pests" was prepared and uploaded at AICRP website Two videos, "Biocontrol Technologies in PAU Package of Practices"(Slide show) and "Farmer explaining use of tricho-cards - feedback" were sent to ICAR-NBAIR for AICRP website

		White fly genetic groups to be checked and to be related with early and late sown crops.	The whitefly populations were collected from different regions of Punjab, Haryana and Rajasthan from cotton crop. The mitochondrial cytochrome oxidase1 gene(mtCO1) nucleotide sequence which has been accepted worldwide to identify the cryptic species of whitefly was amplified, sequenced and analyzed. All the populations collected were identified as Asia II-1 genetic group Whitefly damage was comparatively more on late sown crop, so farmers were advised to sow the cotton crop timely (upto15th May) as part of IPM Strategy
		Parasitisation of white flies to be studied in detail.	Regular field surveys were conducted in cotton growing areas (Bathinda, Mansa, Fazilka, of Punjab to collect the immature stages of whitefly during 2017-18 to 2021-22. Two parasitoids, <i>Encarsia lutea</i> and <i>Encarsia Sophia</i> were recorded parasitizing whitefly in cotton crop. The mean parasitization by <i>Encarsia</i> spp. Indifferent cotton growing areas of Punjab varied from 5 to 10 per cent. The parasitization was comparatively more in unsprayed plots as compared to sprayed plots.
		Production of macrobials and microbials and area coverage to be committed as fixed targets to commensurate with the contingency funding.	Macrobials are being produced to capacity as per targets. The contingency was increased during the period of reporting though presently it is not sufficient. Funding from state schemes (RKVY, Misc, NHM, NABARD etc) being used to meet the targets. Microbial production up scaling limited due to registration issues
4.	SKUAST, Srinagar	Strengthen mass production of EPN and supply to farmers.	The EPN tested against codling moth are not effective in cold arid desert region of Ladakh because of no humidity. So no diseases on apple plants are being observed till to this date. However, the mass production of

		Г	
		A complete comprehensive	egg parasitoids, pheromone baited traps, lures for different traps are being produced and supplied to farmers.
		management protocol for codling moth.	A complete comprehensive management protocol for codling moth already in place
		Success story for Codling moth to brought out in three months time and put up on University/NBAIR website.	Success story of coding moth will be provided in due course of time and will be put on both the web pages of NBAIR & SKUAST-K Yes, PI/Co-PI will visit to YSPUHF to get hands on training and also the culture of predatory mite and shall be mass produced.
		The technology for predatory mite proved developed at YSPUHF to be adopted at SKUAST.	
		Unidentified species of natural enemies including spider to be sent to NBAIR for identification.	The unidentified specimens of insect pests/ Spiders/ other natural enemies are being already been sent to NBAIR for identification Vac. we are in the
		Identification duplicate specimens may be sent to NBAIR museum.	process of sending the fresh duplicate specimens in the ongoing summer season
		Attempts to be made to publish/patent the refind production structure for <i>Corcyra</i> developed by the centre with supporting data.	There is no such variation in the production of Corcyra culture which is so different from the rest of the world or India that needs patent filing and no merit in patenting this technology.
5.	ANGRAU	Sugarcane community fund – under sugar mills can be explored for the activities related to biological control of sugarcane pests.	Management of sugarcane white grub using entomopathogenic fungi in white grub endemic areas (200 ha) with the funds from Navabharath sugars, Samarlakota, East godavari district, Andhra Pradesh during 2017- 2018. Technical support in

	Establishing Biocontrol labs at Navabharath sugars, Samalkota and Parrysugars, Sankila and KCP sugars Vuyyuru for production of <i>Trichogramma chilonis</i> and Popularization of Biocontrol against sugarcane borers. Technical support to farmer producer organisation (FPO) groups and NGO resulted in establishment of Trichocard production unit and Biocontrol lab at two villages benefitting tribal farmers
	of Araku and chinthapalliin Andhra Pradesh
Data to be generated on resources supplied to be obtained from farmers, area of adoption, benefits obtained and economics.	Data generated on biocontrol resources supplied to the farmers, area of adoption, benefits obtained and cost economics for the Biocontrol technologies (heat tolerant <i>Trichogramma chilonis</i>) against sugarcane shoot borers ; Entomopathogenic nematode, <i>Heterorhabditis indica</i> (NBAIR-H38) against sugarcane white grub; entomopathogenic fungus, <i>Metarhizium anisopliae</i> against sugarcane white grub ; Biosuppression of <i>Chilo partellus</i> , <i>Sesamia inferens</i> with <i>Trichogramma</i> <i>chilonis</i> ; Management of maize fall armyworm using biocontrol agents (<i>Trichogramma choilonis</i>) and biopesticides (<i>Bacillus thuringiensis</i> NBAIR Bt25, <i>Metarhizium anisopliae</i> NBAIR Ma35) ; Efficacy of <i>Bacillus</i> <i>thuringiensis</i> NBAIR Bt G4 against pod borer complex in red gram; BIPM practices in rice. Popularized Biocontrol using <i>Trichogramma</i> <i>chilonis</i> (Heat tolerant and normal) (34,352 CC); <i>Metarhizium anisopliae</i> NBAIR Ma 35 and <i>Isaria</i> <i>fumosorosea</i> NBAIR Pfu5 (3555 kg) in 7582 acres of Rice, Maize, Sugarcane, Vegetables, Ginger,
	Coconut benefitting 2800 farmers of Andhra Pradesh. Under TSP, Biocontrol agents (9700 No. Trichocards), Biopesticides (378 kg

		Investorie to more the	<i>Trichoderma asperellum</i> ; 489 kg <i>Pseudomonas fluorescense</i> ; supplied to 461 tribal farmers in an area of 520 acres resulted in increased yields and net income in rice, rajma, ginger, vegetables and data was documented.
		Important to map the visibility of bioagents – the spread and adoption rates to be quantified to indicate the impact of the technologies.	Sugarcane, Vegetables, Ginger, Coconut in Andhra Pradesh state. Under TSP, Spread and adoption of Biocontrol agents from one crop- rice in one village of 40 acres by 41 farmers in 2015-16 to 4 crops – rice, rajma, ginger, vegetables in 50 villages of 520 acres during 2017-18 to 2021-22 benefitting 461 tribal farmers with increased yields and net income. One Tribal farmer adopting biocontrol realized increased production in rice (4550 kg/ha), ragi (1000 kg/ha), ginger (3500 kg/ha), turmeric (750 kg/ha) and vegetables (2200 kg/ha) with net income of Rs. 2,98,500/- per ha during 2021-22 compared baseline period 2015-16 production in rice (2100 kg/ha), ragi (500 kg/ha), ginger (2000 kg/ha), turmeric (280 kg/ha) and vegetables (1250 kg/ha) with net income of Rs.1,15,700/- per ha.
6.	PJTSAU	Spider fauna recorded may be identified in collaboration with NBAIR.	1) Insect and spider specimens are being sent to NBAIR for identification. The identified spider spwecies are Argiope anasuja, Pardosa sp, Chalcotropis sp, Telamonia dimidiata, Tetragnatha versicolor, Clubiona sp. in rice crop
		The trials on maize with biocontrol agents may be dropped/deleted as there is no pest incidence.	Trials on maize for the stem borer have been dropped and trial on Fall Armyworm are being done as the pest has been damaging the crop severely since last 4 years
		Local strains of <i>Metarhizium</i> and <i>Lecanicillium lecanii</i> may	Our University did not have its own strains of <i>Metarhizium</i> and <i>Lecanicillium</i> Hence, we validated the

		be provided by the centre for evaluation by other centres.	strains of NBAIR. If we get our own strains in future we will share to other centres.
		Monitoring of the programmes must be ensured based on the requirements if the farmers are and the recommendations made under package of practices by the University.	Trials of the scheme are proposed based on the requirements of the farming community and the technical programme is also ratified upon in the state level technical programme conducted by the University each year.
7.	Dr YSPUHF, Solan	Search for local isolates/strains of bioagents.	<i>Heterorhabditis bacteriophora</i> and <i>Trichoderma asperellum</i> were local isolates and have been utilized for the control of insect-pests of apple and diseases ofpea. Further efforts are made to isolate more local strains and utilized for insect-pests and diseases management of crops.
		Success story to be prepared on apple root borer in three months time.	Success story in hindi has been prepared.
		<i>Metarhizium</i> and predatory mites to strengthen mass production program.	Mass production of <i>M. anisopliae</i> and predatory mite, <i>Neosiulus</i> <i>longispinosus</i> have strengthened and is being produced regularly.
		Not working with state Biocontrol labs and KVKs for mass production and dissemination of proved technologies.	The university has good linkages with State Biocontrol Laboratory and Krishi Vigyan Kendras. The proven technology is demonstrated through KVKs and Research Stations of the University.
		It was recommended that the pathology/nematology component can be included for the centre for specific crops without any financial commitment.	The nematology and pathology components have been included in research trials for the management insect-pests of apple and pea.
		The centre should focus on supply of <i>metarhizium</i> and mites to farmers.	The centre is continuously supplying the <i>Metarhizium anisopliae</i> and predatory mite to the farmers for the management of insect-pests of crops.
		Success stories in English and Hindi to be sent to NBAIR and University.	The Success story in hindi has been prepared and in English it will also be prepared.

		-	
		All proved technologies to be brought out by the centre to be included in the University POP.	The proven technologies will be included in POP in the state level officers workshop of POP for horticultural crops. For inclusion of <i>M. anisopliae</i> technologies in POP, the toxicological data is required.
		Quantum of production of bioagents, supply to farmers, area covered under biocontrol. Farmer feedback on impact should be documented.	The quantum of production of bioagents and area covered and supply of bioagents to farmers are done on need basis of farmers. The impact of biocontrol agents is documented on the basis of farmers feedback.
8.	TNAU	Parasitism to be measured as percentage parasitism (not as number of adults emerged / percent adult emergence).	Complied
		Status of pin worm <i>Tuta absoluta</i> in Tamil nadu to be re-checked in Erode and surrounding areas.	<i>Tuta absoluta</i> damge was 15-20 percent in Erode District.
9.	AAU, jorhat	Search for local isolates/strains of bio agents.	Budgetary support for meeting the registration costs obtained from GoK under RKVY and plan funds. Project on popularisation of bioagents completed under ATMA scheme of DoA
		Success story on biocontrol of cabbage diamond back moth and potato cut worm to be prepared in three months' time and to be hosted on University and ICAR- NBAIR websites.	A success story of Mr. Atul Missong, (45 years), and Rajiv Morang was already uploaded in the NBAIR website (<u>databases.nbair.res.in</u>).
		Centre to strengthen the mass production program for tricho-cards and other biocontrol agents.	About 2725 numbers of Tricho-cards were produced covering 270 ha area during 2017-22 and biopesticide 1950 kgs covering area 65 ha in 2020-22. Enabling large scale adoption of
		Networking with state Biocontrol labs and KVKs for mass production and dissemination of proven	proven bio control technologies in rice, maize, and vegetables were through KVK Jorhat, Golaghat, Nagaon, Sibasagar and Diphu during

		technologies. Identified duplicate specimens may be sent to ICAR-NBAIR museum.	2017-2022. Mass production of Trichogramma was started with KVK Kamrup, Guwahati to cover lower Assam area.Up to 2019 it was sent during Covid 19 period, it was not sent.
10.	MPKV, Pune	The centre should have tie up with biocontrol agent producers. Important to compare the local commercial products with the products formulated by the centre.	There is a good association of this centre with Biocontrol agent producers. The biopesticide producers particularly for the production of <i>Lecanicillium lecani, Beaveria</i> <i>bassiana. Pseudomonas fluorescense,</i> <i>Trichoderma viride</i> etc. consulted for their constraints to the AICRP, Pune centre. Besides <i>Trichogramma.</i> <i>chilonis, Cryptolaemus. montrouizieri</i> are also produced by the few bioagent producers with the help of this centre.
		Status paper on quality control of biopesticides to be prepared. A programme has to be launched to take up Quality analysis of commercial products without revealing the source of the products.	This centre has referral laboratory for testing quality parameters of biopesticides allotted by DBT (CIB & RC) since 2006. During last 5 years this lab tested 242 biopesticides samples for obtaining CIB & RC registration for quality parameters received from different biopesticides producers. The marketed samples of biopesticides were taken from the market and analyzed in the laboratory for the quality parameters
11.	GBPUAT	To aim towards commercialization registration the centre to generate toxicology data for the potential isolates through applying for lateral funding. The potential isolates to be shared with other AICRP/Institutes for generation of field efficiency data in different agroecological zones.	According to new CIBRC the commercialization and registration of potential isolates is being negotiated. The potential isolates are shared with PAU, AAU Anand, YSPUHF Solan, SKUAST Jamu, IGKV Raipur and KAU, Vellayani.
		To prepare success stories for the potential isolates PBAT-3 and the fourteen in English and local languages and put	Three folders of success stories (Hindi and English), one video film prepared for the potential isolates PBAT-3 and PBAT-14. These folders and film were uploaded

		up on website of University and NBAIR	on website of GB Pant University and NBAIR.
12.	UAS, Raichur	Continuous monitoring of treated fields during successive seasons. Quantified data to be prepared on area covered with bio- agents, number of farmers benefitted, economic benefits and impact analysis.	Follow up monitoring of treated fields of farmers over a period of five years is done and collected farmers feedback about use of bio control agents. Over a period of five years, 50 tonnes of bio pesticides was produced and distributed over an area of 20,000 ha on various crops viz., rice, cotton, chilli, and sugarcane, and data will be presented during the QRT meet.
13.	MPUAT	To prioritize crop/pest/ bio agents for future work. To focus on production of specific bioagents, maximum area coverage and farmers involvement.	Focus on the production of <i>Trichogramma</i> sp. and produced 6967 Trichocards and release in 330 hectare area of tomato, maize and other kharif crops.
14.	CAU, Pasighat	Experiments on rice may be stopped as pest incidence for last 3-4 years is much below ETL level, and work on <i>Pseudomonas</i> may be continued for rice blast disease. Since the PI is Nematology background, it was suggested that PI should propose experiments on nematology work in one month time and should be incorporated in AICRP-BC technical programme for 2017-18 & 2018-19 e.g. Management of Root-Knot nematodes in vegetables.	Experimental field trials were not conducted on Rice Carried out experiment on Bio- intensive RKN insect and RKN management in Brinjal. Isolated Steinernematid spp. from Arunachal reserve Forest, Ruksin block using 30 soil samples
		More study should be on documentation of diversity that includes both insect pests and natural enemies.	First report of RSW on Coconut, First record of Anisopteromalus calandrae, a parasitoid on Bruchids in Green gram. on Broom plant, <i>Formicoccus polysperes</i> on Colocasia, <i>Aphis craccivora</i> on Faba bean and Pinaspisbuxi on Bush pepper.
		Unidentified species of	Submitted spider samples and parasitoids from yellow pan trap

		natural enemies including spiders to be sent to ICAR- NBAIR for identification.	collection for identification
15.	OUAT	Adequate funding support to be provided by the University for the AICRP-BC work.	Two lakh rupees provided by the University in Revolving fund mode to increase the production of bio agents for farmers of the state .
		Experiments on plant disease management with <i>Trichodermitalics</i> and other biocontrol agents may be taken up. Strains from NBAIR to be evaluated.	Experiments will be taken up during coming financial years in association with pathology department of our University and Strains from NBAIR will be evaluated
		Centre to focus on few bioagents with large coverage area to be followed up with proper monitoring.	Large scale demonstrations of Rice, Sugarcane (5 ha each) and Brinjal crop (3 ha) were taken up in the farmers field)during this QRT period under BIPM packages.

General Recommendations	ATR
Accountability for contingencies to be provided for AICRP centres	
Safety precautions to be followed by all workers	Complied
while handling bio-agents/pesticides.	Compiled
Digitization of data and submission by all co- ordinating centres.	Complied
Production of macrobials and microbials and	Complied
area coverage to be committed as fixed targets	
to commensurate with the contingency funding.	
All centres should contribute towards the	Samples are being submitted by all the
NBAIR museum in terms of	centres
specimens/digitized materials.	
When required, Young Professionals may be hired as per ICAR norms for SAU centres.	YPs are being recruited by the centres
Success stories English, Hindi and local	Success stories have been prepared in
languages to be sent to ICAR-NBAIR and	different languages.
University for putting up on the websites.	
Attempts to be made to include all proven	Good technologies have been included in
technologies brought out by the respective	PoPs
AICKF centre in the University package and	
Attempts to be made to register/commercialise	Potential isolates have been registered
the proven isolates/technologies.	
All centres should document the quantum of	Documented the production of bioagents
bioagents production, supplied to farmers and	by various centres

area covered under biocontrol. Farmer feedback on impact should also be documented. This information should be presented in all reports.	
Cost benefit not only in terms of economics but also based on environment safety since, North Eastern region mainly focusing on organic farming.	C: B ratio calculation was done based on environmental safety.
\Approved pesticides by the Registration Committee should be selected for all comparative efficacy trials with biopesticides.	Complied
Centres should establish effective linkages with other departments/ institutions/organisations	Established linkages with organizations

Specific Recommendations	ATR
Travel grant should be enhanced	25 % increased
Funding of AICRP centres should be linked to	Complied
performance	
Contingency grant must be enhanced	25% increased
AICRP -BC to be retained	Retained

Main Report

Sl.	Centres	Mandatory Crops		
No.				
	State Agricultural U	Iniversity-based centres		
1.	Punjab Agricultural University,	Rice, Sugarcane, Maize, Cotton, Pulses,		
	Ludhiana	Vegetables (open and polyhouse)		
2.	SKUAST-K	Apple and other temperate fruit crops Cole		
		crops		
3.	Professor Jayashankar Telangana	Rice, Cotton, Maize, Pulses, Soybean,		
	State Agricultural University	Groundnut		
4.	ANGRAU, RARS, Anakapalle	Rice, Maize, Sugarcane, Pulses (Red gram,		
		Green gram, Black gram), Oilseeds (Sesame,		
		Groundnut), Coconut		
5.	MPKV (Rahuri), Pune	Cotton, Rice, Vegetables, Sugarcane, Pulses		
		and Maize		
6.	TamilNadu Agricultural	Brinjal, Bhendi, Tomato, Jasmine, Cabbage,		
	University, Coimbatore	Maize, Chickpea, Pigeonpea, Cassava and		
		Coconut		
7.	AICRP on Biological Control,	<u>2017-18 to 2019-20</u>		
	Department of Entomology,	Rice, Mustard, banana, brinjal, Cabbage		
	Assam Agricultural University,	(included in 2019-20)		
	Jorhat	<u>2020-21 to 2021-22</u>		
		Rice, Cowpea, Okra, Cabbage, Cucumber,		
		Banana (dropped in 2021-22), Black Rice,		

		Maize, Ginger		
8.	YSPUHF, Solan	Apple, Tomato, Capsicum, Cucumber and		
		Pea		
9.	KAU Thrissur	Rice, Coconut, Banana, Vegetables and Spices		
	Voluntary centres	(Contingency funded)		
10.	KAU Vellayani	Rice, Coconut, Banana, Vegetables - Cowpea,		
		Amaranthus, Brinjal		
11.	Regional Agricultural Research	Coconut, Vegetables		
	Station, Kumarakom			
12.	CHF, Central Agricultural	Rice, Tropical Fruits & Vegetables		
	University (I), Pasighat			
13.	AICRP on Biological Control of	Rice ,Sugarcane, Brinjal and Maize crop		
	Crop Pests and Weeds, OUAT			
	centre, Bhubaneswar			
14.	Citrus Research Station, Dr. YSR	Citrus		
	Horticultural University, Tirupati			
	(Non-Contingency centre)			
15.	ICAR-Indian Institute of	Vegetables		
	Vegetable Research, Varanasi,			
	U.P.			
16.	ICAR-IIRR	Rice		
17.	ICAR-IIHR, Bengaluru	Tomato, Chilli, Brinjal, Okra		
18.	ICAR-IIMR, Hyderabad	Sorghum, and Small Millets (Finger, Barnyard,		
		Little and Proso millet)		
19.	Dr. YSRHU-HRS, Ambajipeta	Coconut and Cocoa		
20.	ICAR-NRRI	Rice		
21.	Indira Gandhi Krishi	a) Rice (BIPM conducted – 3 trials) during the		
	Vishwavidyalaya, Raipur (C.G.)	year in 2018-19, 2019-20 and 2020 – 21.		
		b) Chickpea (2 years) during the year 2021 –		
		22, 2022 – 23.		
		c) Okra (2 years) during the year $2021 - 22$,		
		2022 - 23		

XXIII. Research Programmes 2017 to 2022

- 1. Biodiversity of biocontrol agents from various agro-ecological zones
- 2. Surveillance for pest outbreak and alien invasive pests
- 3. Biological control of pests and diseases of cereals
- 4. Biological control of pests and diseases of pulses and oilseeds
- 5. Biological control of pests and diseases of commercial crops (Cotton and Sugarcane)
- 6. Biological control of pest and diseases of fruits
- 7. Biological control of pests and diseases of vegetables, polyhouse pests and flowers
- 8. Biological control of pest and diseases of plantation crops, spices and tubers
- 9. Capacity Building Programmes
- 10. Tribal Sub Plan

Sl.no	Experiments /Trials	Durati	Status of
		on	the Trail
		during	
		review	
1.	Management of rice stem borer and leaf-folder using	2018 to	Concluded
	entomopathogenic nematodes and entomopathogenic	2021	
	fungi		
2.	Management of plant hoppers through BIPM approach	2018 to	Concluded
	in organic basmati rice	2021	
3.	Large scale bio-intensive pest management on rice	2018 to	Concluded
		2020	
4.	Evaluation of bio-agent consortium in glasshouse (pot	2017 to	Concluded
	experiments) and in field for crop health management in	2020	
	rice		
5.	Bio-intensive pest management on rice at the	2018 to	Concluded
	Instructional Research Farm of IGKV, Raipur.	2022	
6.	Improved formulation of B. bassiana against Rice leaf	2017 to	Concluded
	roller Cnaphalocrocis medinalis	2021	
7.	Comparative efficacy of entomopathogenic fungi against	2017 to	Concluded
	sucking pests of rice, Leptocorisa acuta	2020	
8.	Validation of BIPM practices against pest complex of	2018 to	Concluded
	organic Black rice	2021	
9.	Management of rice stem borer and leaf-folder using	2020 to	Ongoing
	entomopathogens	2022	
10.	Evaluation of entomopathogens against sucking pests of	2020 to	Ongoing
	rice (Rice bug L. acuta, and Green leafhopper and Plant	2022	
	hopper (Sogatella sp)		
11.	Field evaluation of entomopathogens and plant growth	2020 to	Ongoing
	promoting bacteria against Rice stem borer	2022	
	(Scirpophaga incertulas), Leaf folder (Cnaphalocrocis		
	medinalis), Brown plant hopper (Nilaparvata lugens)		
12.	Large scale demonstration of bio-intensive pest	2020 to	Ongoing

	management on rice	2022	
13.	Evaluation of entomopathogenic fungi and Bt against	2018 to	Ongoing
	maize stem borer	2022	
14.	Biological control of maize stem borer, Chilo partellus	2018 to	Ongoing
	using Trichogramma chilonis	2020	
15.	Bio-ecological engineering for the management of major	2018 to	Ongoing
	insect pests of maize and benefit of their natural enemies	2022	
16.	Field trial against Fall Armyworm in maize at AICRP-	2018 to	Ongoing
	BC centres	2022	
17.	Large scale demonstration of Trichogramma chilonis	2020 to	Ongoing
	against maize stem borer Chilo partellus	2022	
18.	Laboratory bioassay of Metarhizium rileyi (Anakapalle	2020 to	Concluded
	strain AKP-Nr-1) against Fall armyworm, Spodoptera	2022	
10	frugiperda	2020	
19.	Field efficacy of <i>Metarhizium rileyi</i> (Anakapalle strain	2020 to	Concluded
	AKP-Nr-lagainst Fall armyworm, Spodoptera	2022	
20	<i>frugiperda</i> in maize	2020.4-	Constants
20.	Demonstration of BIPM module against fall army worm,	2020 to	Concluded
	Spoaoptera furgiperad on rabi maize	2022	Concluded
21.	Evaluation of BIPM module for fail armyworm, Spedentera frugiparda in maize ecosystem	202010	Concluded
22	Large scale demonstration of Management of fall	2022 2020 to	Concluded
22.	armyworm using biological control agents and	202010	Concluded
	Bionesticides	2022	
23	Evaluation of BIPM module for fall armyworm	2020 to	Concluded
	Spodoptera frugiperda in maize ecosystem	2022	
24.	Studies on abundance of natural enemies of borers in	2018 to	Concluded
	Millets	2020	
25.	Evaluation of entomopathogenic fungi formulations	2018 to	Ongoing
	against millet borers in Finger millet	2022	
26.	Field trial against Fall armyworm in sorghum at AICRP-	2018 to	Concluded
	BC centres	2020	
27.	Management of FAW in Sorghum using biocontrol	2020 to	Concluded
	agents	2022	
28.	Evaluation of NBAIR Bt formulation on pigeon pea	2018 to	Ongoing
	against pod borer complex	2022	
29.	Demonstration of <i>Trichoderma</i> spp for the management	2018 to	Concluded
	of Fusarium wilt in pigeon pea	2020	
30.	Evaluation of entomopathogenic fungi against pod bug,	2018 to	Ongoing
	Riptortus pedestrison cowpea Vigna unguiculata	2022	
31.	Field evaluation of ICAR-NBAIR entomopathogenic	2018 to	Ongoing
	strains against cowpea aphid (Aphis craccivora)	2022	

32.	Screening of promising fungal and bacterial isolates for	2018 to	Concluded
	management of anthracnose disease in cowpea (Vigna	2020	
	unguiculata sub sp. sesquipedalis)		
33.	Evaluation of entomopathogenic biopesticide against	2020 to	Concluded
	Aphis craccivora in cowpea (Vigna unguiculata)	2022	
34.	Evaluation of oil formulation of Lecanicillium spp	2020 to	Concluded
	against sucking pests (aphids and pod bugs) of cowpea	2022	
35.	Integration of botanicals, microbials and insecticide	2018 to	Concluded
	spray schedule for the management of Helicoverpa	2020	
	armigera on chickpea		
36.	Biological suppression of pod borer, Helicoverpa	2018 to	Concluded
	armigera infesting chickpea on-farm and farmers field	2021	
37.	Evaluation of bio-agent consortium in glasshouse (pot	2018 to	Concluded
	experiments) and in field for crop health management in	2021	
	chickpea		
38.	Habitat manipulation / Bio-ecological engineering for	2018 to	Concluded
	the management of Helicoverpa armigera in chickpea	2020	
39.	BIPM module for management of Helicoverpa armigera	2018 to	Concluded
	on chickpea	2020	
40.	Evaluation of Biointensive Integrated Pest Management	2020 to	Concluded
	against pod borer in chickpea in Bundelkh and region	2022	
41.	Large Scale Demonstration of HaNPV Kalaburgi strain	2020 to	Concluded
	against chickpea pod borer	2022	
42.	Integration of botanicals/microbials and insecticide	2020 to	Concluded
	spray schedule for the management of pod borer	2022	
	complex in Greengram		
43.	Large scale demonstration of entomopathogenic fungi,	2020 to	Concluded
	Metarhizium rileyi against soybean defoliators in Bidar	2022	
	district		
44.	Biointensive management of pink bollworm on <i>Bt</i> cotton	2018 to	Concluded
		2020	~
45.	Evaluation of entomotingal agents and botanicals for	2018 to	Concluded
1.5	the management of sucking pests in cotton	2021	<u> </u>
46.	Bio-intensive pest management in <i>Bt</i> cotton	2018 to	Concluded
47		2020	
47.	Population dynamics of whitefly, <i>Bemisia tabaci</i> and its	2018 to	Concluded
	natural enemies in cotton: A study in farmers' field in	2020	
4.0	North Zone	2020.4-	Construite d
48.	Evaluation of entompthogenic rungi, <i>Beauveria bassiana</i>	2020 to	Concluded
	(INDAIK-DU-Ja) against sucking insect pests of cotton	2022	
/0	Efficacy of entomonathogenic nometoday and	2018 to	Concluded
47.	entomofundus for the management of white grub in	201010	Concluded
	cinomorangus ior me management or write grub m	2020	

50		2020 /	
50.	Efficacy of entomopathogenic fungi for the management	2020 to	Concluded
	of white grub in sugarcane ecosystem	2022	~
51.	Field efficacy of EPN strains against white grubs in	2020 to	Concluded
	sugarcane	2022	
52.	Large Scale Demonstration of Trichogramma chilonis	2018 to	Ongoing
	against sugarcane borers (early shoot borer, top borer	2022	
	and stalk borer)		
53.	Field efficacy of dose application of EPN against white	2020 to	Concluded
	grubs in sugarcane	2022	
54.	Field evaluation of ICAR-NBAIR endophytic	2020 to	Ongoing
	entomopathogenic strains against shoot borers (Chilo	2022	
	infuscatellus and Chilosacchariphagus indicus) in		
	sugarcane		
55.	Bio-efficacy of entomopathogenic fungus and neem	2018 to	Concluded
	against mustard aphid	2021	
56.	Evaluation of entomopathogens against mustard aphid	2020 to	Ongoing
		2022	
57.	Field efficacy of EPN strains against white grubs in	2018 to	Concluded
	groundnut (Trial by Dr. Nagesh in collaboration with	2022	
	AICRP-AAU, Anand; MPUAT, Udaipur); sugarcane		
58.	Field efficacy of dose application of EPN against white	2018 to	Concluded
	grubs in groundnut (Trial by Dr. Nagesh in collaboration	2020	
	with AICRP-AAU, Anand; sugarcane		
59.	Evaluation of locally isolated potential	2020 to	Ongoing
	entomopathogenic fungi, Metarhizium rileyi and	2022	
	Beauveria bassiana (NBAIR-Bb-5a) against groundnut		
	leaf miner and tobacco caterpillar in ground nut		
	ecosystem		
60.	Bio-efficacy of entomopathogens against Banana fruit	2018 to	Concluded
	and leaf scaring beetles, Nodostoma subcostatum	2021	
61.	Biological control of Papaya/mulberry mealybug/	2018 to	
	complex with Acerophagus papayae & Cryptolaemus	2021	Concluded
	montrouzieri		
62.	Integrated Pest Management of apple Codling moth,	2018 to	Concluded
	Cydia pomonella	2020	
63.	Validation and large scale field demonstration of IPM	2020 to	Concluded
	Technology of Codling moth, Cydia pomonella infesting	2022	
	apple in Ladakh		
64.	Evaluation of predatory bug, Blaptostethus pallescens	2018 to	Concluded
	against European red mite, Panonychus ulmi and two	2022	
	spotted spider mite, Tetranychus urticae on apple		
65.	Management of apple root borer using Metarhizium	2018 to	Concluded

	anisopliae	2022	
66.	Evaluation of some biocontrol agents against leopard	2018 to	Concluded
	moth, Zeuzera multistrigata in apple	2022	
67.	Effect of biopesticides for the management of mango	2018 to	Concluded
	hopper, Idioscopus spp. in field condition	2020	
68.	Bio-efficacy of bio-pesticides for the management of	2018 to	Concluded
	mango hoppers	2020	
69.	Bioefficacy of entomopathogenic fungi formulations in	2018 to	Concluded
	suppression of mango leaf webber	2020	
70.	Habitat manipulation for conservation of bioagents for	2018 to	Concluded
	management of mango insect pests	2020	
71.	Habitat manipulation for conservation of bioagents for	2020 to	Concluded
	management of mango insect pests	2022	
72.	Bioefficacy of entomopathogenic fungi formulations in	2020 to	Concluded
	suppression of mango tortricid borers	2022	
73.	Bio-intensive management of mango hopper	2020 to	Concluded
		2022	
74.	Field evaluation of microbial biocontrol agents for the	2018 to	Concluded
	management of mango thrips	2022	
75.	Management studies for inflorescence thrips on mango	2018 to	Concluded
	with bio pesticides in field conditions	2022	
76.	Evaluation of bio-agents against root-knot nematode and	2018 to	Concluded
	Fusarium wilt complex infection in guava under	2021	
	controlled conditions		
77.	Biological control of guava mealy bug and scales using	2018 to	Concluded
	entomopathogens	2021	
78.	Development of biocontrol based ipm module for the	2020 to	Concluded
	management of guava fruit borers	2022	
79.	Biological control of root knot nematode in guava	2020 to	Concluded
		2022	
80.	Evaluation of entompthogenic fungi, Beauveria bassiana	2020 to	Concluded
	(NBAIR-Bb-5a) against mealy bug in guava ecosystem	2022	
			~
81.	Biological control of anola mealy bug and scales using	2018 to	Concluded
	entomopathogens	2021	~
82.	Field evaluation of bio pesticides for the management of	2018 to	Concluded
	sucking pests of citrus	2022	
83.	Evaluation of potential isolates of microbials against	2018 to	Ongoing
	citrus thrips and green mites (rust and green mites)	2022	
84.	Bio-intensive management of litchi fruit borer,	2020 to	Ongoing
	Conopomorpha sinensis (Bradley) in litchi	2022	~
85.	Surveillance of rugose whitefly in coconut and assessing	2018 to	Concluded
	the population of natural biocontrol agents	2021	

86.	Management of Coconut black headed caterpillar using	2018 to	Concluded
	Goniozus nephantidis and Bracon brevicornis in	2020	
	endemic areas of Kerala		
87.	Screening of coleopteran specific Bt formulation	2018 to	Concluded
	(NBAIR strains) against red palm weevil	2020	
	(Rhynchophorus ferrugineus)		
88.	Field evaluation of bio agents against rugose spiraling	2020 to	Concluded
	whitefly on coconut	2022	
89.	Management of Coconut Rugose spiralling whitefly	2020 to	Concluded
	using entomopathogenic fungi, Isaria fumosorosea	2022	
90.	Area-wide demonstration of biological suppression of	2020 to	Ongoing
	black headed caterpillar using Goniozus nephantidis and	2022	
	Bracon brevicornis		
91.	Converging biological suppression approaches for area-	2020 to	Concluded
	wide management of coconut rhinoceros beetle	2022	
92.	Biological suppression of rugose spiralling and nesting	2018 to	Ongoing
	whitefly in coconut.	2022	
93.	Evaluation of microbial insecticides against bagworm,	2018 to	Concluded
	Pteroma plagiophelps in cocoa	2020	
94.	Field evaluation of bioagents against pod rot and stem	2018 to	Concluded
	canker (Phytophthora sp.) in cocoa	2020	
95.	In vivo evaluation of effective bio control agents against	2020 to	Concluded
	Phytophthora Pod rot management in cocoa	2022	
96.	Field evaluation of bio-pesticides against red spider	2018 to	Concluded
	mites	2020	
97.	Bio-intensive pest management of Helicoverpa	2018 to	Concluded
	armigera, Tuta absoluta and sucking pests of tomato	2022	
98.	Large scale field trials for the management <i>Helicoverpa</i>	2018 to	Concluded
	<i>armigera</i> on tomato (MPUAT – 2 ha)	2021	
99.	Demonstration on bio-intensive management of insect	2020 to	Concluded
	pests of tomato (0.5-1.0ha)	2022	
100.	Role of Habitat manipulation for pest management in	2020 to	Concluded
	Tomato	2022	
101.	Bio-intensive insect and nematode (RKN) management	2018 to	Concluded
	in brinjal	2021	
102.	Bio-efficacy of microbial agents against Myllocerous	2018 to	Concluded
	subfasciatus on brinjal	2022	
103.	Biointensive pest management of brinjal fruit and shoot	2018 to	Concluded
	borer and whitefly on brinjal	2020	
104.	Development of biocontrol based IPM module for the	2020 to	Concluded
	management of fruit and shoot borer, Leucinodes	2022	
	orbonalis (Guenee) in brinjal		
105.	Bio-efficacy of microbial agents against leaf hopper in	2020 to	Concluded

	brinjal	2022	
106.	Efficacy biocontrol agents for management of fruit	2018 to	Concluded
	borer, Earias vittella on bhendi	2021	
107.	Management of Tetranychus truncatus using Neoseiulus	2018 to	Concluded
	indicus on Okra	2020	
108.	Management of hoppers, aphids and Whitefly on Okra	2020 to	Concluded
	by oil based formulation of Metarhizium anisopliae	2022	
109.	Evaluation of <i>Neoseiulus indicus</i> for the management of	2020 to	Concluded
	spider mites on okra	2022	
110.	Evaluation of biointensive IPM module against key pests	2020 to	Concluded
	of okra	2022	
111.	Bio-intensive pest management in okra	2020 to	Concluded
		2022	
112.	Evaluation of Steinernema carpocapsae and	2018 to	Concluded
	Heterorhabditis indica (NBAIR strain) against	2020	
	lepidopteran pest complex		
113.	Biological control of lepidopteran pest complex and	2018 to	Concluded
	aphid on cabbage (CAU 0.1 ha)	2020	
114.	Field evaluation of ICAR-NBAIR entomopathogenic	2018 to	Concluded
	strains against cabbage aphid (Brevicoryne/Myzus) and	2021	
	Plutella xylostella (DBM)		
115.	Management of cabbage pest, Plutella xylostella through	2018 to	Concluded
	biological control agents (in farmer field, 1 ha)	2020	
116.	Influence of habitat manipulation on incidence and	2020 to	Concluded
	severity of pest damage on cabbage	2022	
117.	Bio-intensive pest management in cabbage	2020 to	Concluded
		2022	
118.	Screening of promising isolates of entomopathogenic	2018 to	Concluded
	fungi for management of white flies in chillies	2020	
119.	Evaluation of fungal pathogens against chilli yellow	2018 to	Concluded
	mite, Polyphagotarsonemus latus on chili	2020	
120.	Management of thrips, aphids and Whitefly on chilli by	2020 to	Concluded
	oil based formulation of Metarhizium anisopliae (IIHR	2022	
	Strain)		
121.	Screening of promising isolates of entomopathogenic	2020 to	Concluded
	fungi for management of mites in chillies (continuing	2022	
	experiment)		
122.	Bio-efficacy of some bio-pesticides against sucking	2018 to	Concluded
	pests (Whiteflies and Jassids) in cucumber	2020	
123.	Evaluation of BIPM against fruit flies	2020 to	Concluded
	Deccausbactrocera sp. against cucumber	2022	
124.	Efficacy of different biocontrol agents against onion	2020 to	Ongoing
	thrips (Thrips tabaci L.)	2022	

125.	Evaluation of entompthogenic fungi, Beauveria bassiana	2020 to	Concluded	
	(NBAIR-Bb-5a) and <i>Lecanicillium leccani</i> (NBAIR-VL	2022		
	15) against sucking insect pests of capsicum in open			
	field condition			
126.	Efficacy of capsule formulations of Beauveria bassiana	2020 to	Concluded	
	in managing amaranthus leaf webber Hymenia	2022		
	recurvalis			
	Polyhouse pests			
127.	Management of sucking pests on cucumber using	2018 to	Concluded	
	anthocorid predator, Blaptostethus pallescens under	2020		
	polyhouse condition			
128.	Management of red spider mite, Tetranychus urticae	2018 to	Concluded	
	infesting rose in polyhouse conditions	2020		
129.	Evaluation of biocontrol agents for the control of	2018 to	Concluded	
	sucking pests in capsicum under polyhouse	2020		
130.	Integrated management of root-knot nematodes in	2018 to	Concluded	
	polyhouses using Pochonia chlamydosporia	2020		
131.	Management of sucking pests on cucumber using	2020 to	Concluded	
	anthocorid predator, Blaptostethus pallescens under	2022		
	polyhouse condition			
132.	Management of sucking pests in Tomato under	2020 to	Concluded	
	polyhouse condition	2022		
133.	Evaluation of biocontrol agents for the control of	2020 to	Concluded	
	sucking pests in capsicum under polyhouse	2022		
134.	Management of phytophagous mites on cucumber using	2020 to	Concluded	
	Blaptostethus pallescens and Neoseiulus longispinosus	2022		
	under polyhouse condition			
135.	Field evaluation of anthocorid bug, Blaptostethus	2020 to	Concluded	
	pallescens against spider mite, Tetranychus urticae	2022		
	infesting carnation in Kashmir (Poly house)			
136.	Evaluation of biocontrol agents for the control of	2020 to	Concluded	
	sucking pests in capsicum under protected cultivation	2022		
137.	Biological control of bacterial wilt of capsicum under	2020 to	Concluded	
	protected cultivation	2022		
138.	Casava KAU all the centres, TNAU, NBAIR New	2020 to	Concluded	
		2022		
	Crop disease management			
139.	Large scale demonstration of bioagents based IPM	2018 to	Concluded	
	module for white grub in groundnut	2020		
140.	Biological control of ginger rhizome rot	2018 to	Concluded	
		2020		
141.	Evaluation of microbial biopesticides against wilt	2020 to	Concluded	
	disease of chickpea in Bundelkh and region	2022		

142.	The bio-control efficacy of identified biocontrol agents	2020 to	Concluded
	towards rice sheath blight (Rhizoctonia solani) disease	2022	
	will be assessed by potted plant method ICAR-NRRI,		
	Cuttack in collaboration with ICAR-NBAIR, Bengaluru		
143.	The bio-control efficacy of identified biocontrol agents	2020 to	Concluded
	towards Rice Blast (Magnaporthe oryzae) and Rice	2022	
	brown spot (Bipolaris oryzae) strain will be assessed by		
	potted plant method		
144.	Field evaluation of ICAR-NBAIR strains against Rice	2020 to	Ongoing
	Blast (Magnaporthe oryzae), Brown spot (Bipolaris	2022	
	oryzae) and sheath blight (Rhizoctonia solani)		
145.	Evaluation of bio-agents consortia in glasshouse and in	2020 to	Concluded
	field for crop health management in rice	2022	
146.	Demonstration of Trichoderma spp for the management	2020 to	Concluded
	of Fusarium wilt in pigeon pea (1 ha)	2022	
147.	Biological control of plant disease using antagonistic	2020 to	Ongoing
	organisms in brinjal	2022	
148.	Large Scale Demonstration of biocontrol technologies	2020 to	Concluded
	against the soft rot of ginger	2022	
149.	Field efficacy of different combinations of Trichoderma	2020 to	Concluded
	harzianum and Pseudomonas fluorescens against the	2022	
	early blight of tomato		
150.	Field efficacy of different combinations of Trichoderma	2020 to	Concluded
	harzianum and Pseudomonas fluorescens against the	2022	
	early blight of potato		
151.	Evaluation of microbial antagonist for the management	2020 to	Ongoing
	of ginger rot disease	2022	
152.	Ecofriendly management of stem rot, Macrophomina	2020 to	Concluded
	phaseolina in sesame using biocontrol agents	2022	
153.	Development of IPM module for the management of	2020 to	Concluded
	rhizome rot (Fungi and bacteria) and shoot borer in	2022	
	Ginger		
154.	Management of Phytophthora disease in black pepper	2020 to	Concluded
	nursery using biocontrol agents (KAU, Thrissur)	2022	
155.	Management of Fusarium wilt in vegetable cowpea	2020 to	Concluded
	using microbial agents	2022	
156.	Screening of promising isolates antagonistic fungi and	2020 to	Concluded
	bacteria against bacterial wilt of Tomato (Ralstonia	2022	
	solanacearum)		
157.	Management of Powdery mildew (Uncinula necator) of	2020 to	Concluded
	Grape by using Biocontrol agents	2022	
158.	Screening of promising isolates of antagonistic fungi and	2020 to	Concluded
	bacteria against bacterial wilt of Tomato (Ralstonia	2022	

	solanacearum) under field conditions		
159.	Evaluation of microbial antagonists for the management	2020 to	Concluded
	of diseases (Powdery mildew/Ascochyta blight/Rust) in	2022	
	pea (PAU-Ludhiana)		
160.	Evaluation of microbial antagonists for the management	2020 to	Concluded
	of foot rot of kinnow caused by Phytophthora spp. (2nd	2022	
	year)		
161.	Evaluation of effective fungal and bacterial antagonists,	2020 to	Concluded
	fungicide and their integration against sugarcane red rot	2022	
162.	Management of Fusarium wilt/ root rot of pea through	2020 to	Concluded
	biological control agents	2022	
163.	Management of major diseases of rice with Bacillus	2020 to	Concluded
	subtilis (TNAU strain)	2022	
164.	Bio-intensive management of wilt and dry root rot	2020 to	Concluded
	complex in chickpea	2022	
165.	Bio-intensive management of chilli wilt and powdery	2020 to	Concluded
	mildew	2022	
166.	Field evaluation of ICAR-NBAIR antagonistic	2020 to	Concluded
	organisms against Maize Turcicum leaf blight	2022	
	(Exserohilum turcicum)		
167.	Field evaluation of ICAR-NBAIR antagonistic	2020 to	Concluded
	organisms against Wheat Yellow rust (Puccinia	2022	
	striiformis f. sp. tritici)		
168.	Field evaluation of ICAR-NBAIR antagonistic	2020 to	Concluded
	organisms against Chick pea Fusarium wilt (Fusarium	2022	
	oxysporum f. sp. ciceris)		
169.	Field evaluation of ICAR-NBAIR antagonistic	2020 to	Ongoing
	organisms against Mustard White rust (Albugo candida)	2022	
170.	Field evaluation of ICAR-NBAIR entomopathogenic	2020 to	Ongoing
	strains against field Pea Rust (Uromycesviciae-fabae)	2022	

XXIV. Highlights of research accomplishments during the period (2017-2022)

CPCRI Kayankulum

Emergence of four exotic whiteflies *viz.*, rugose spiralling whitefly (*Aleurodicus rugioperculatus*), Bondar's nesting whitefly (*Paraleyrodes bondari*), non-native nesting whitefly (*Paraleyrodes minei*) and the palm whitefly (*Aleurotrachelus atratus*) on coconut system was reported during 2017-2019.Morphological and molecular identification of the four non-native whiteflies was established. Further, effective bio-suppression strategies have been evolved to halt the epidemic outbreak of the trans boundary pests. AICRP on BC centre of ICAR-CPCRI reported the occurrence of the two non-native nesting whiteflies as well as the sooty mould scavenger beetle, *Leiochrinusnilgirianus* in the country for the first time.

Aleurodicus rugioperculatus was found to be the most aggressive among the exotic whitefly species. Pesticide holiday approach and conservation biological control using the two aphelinid parasitoids *viz.*, *Encarsia guadeloupae* and *Encarsia dispersa*, predators such as *Apertochrysa* sp., *Jauravia pallidula* and *Cybocephalus* sp. and *in situ* habitat preservation of the scavenger beetle, *L. nilgirianus* subdued the invasive potential of *A. rugioperculatus* from >80% to <10%. Augmentative release of the stage specific parasitoids *viz.*, *Goniozus nephantidis*, *Bracon brevicornis* and *Brachymeria nosatoi* bio-suppressed the black headed caterpillar, *Opisina arenosella* infestation significantly and regained palm health. Area-wide application of green muscardine fungus, *Metarhizium majus* @ $5x10^{11}$ /m³ in the breeding zones reduced leaf damage by 80% and enhanced nut yield by 13%.

Dr YSRHU-HRS, Ambajipeta

Non-insecticidal and biocontrol based management for rugose spiraling whitefly (RSW) in coconut was successfully implemented and propagated.

Initial parasitisation of *Encarsia guadeloupae* was nil/ very meager in the state of Andhra Pradesh. Therefore, special concentrated efforts were made to augment this parasitoid through inoculative release which was regularly obtained from ICAR- CPCRI, ICAR-NBAIR, Bangalore and TNAU, Coimbatore. This parasitoids were released in the RSW infested coconut plantations during 2017 to 2019. This results parsitoid well established throughout the Andhra Pradesh and its natural parasitism recorded more than 70% during 2021.

Beside, parasitoid, the neuropteran predator, *Apertochrysa astur* eggs and grubs were found to be potential biocontrol agent, therefore, mass multiplication protocolwas standardized in laboratory and supplied about 90 lakh eggs to farmers from Andhra Pradesh, Tamil Nadu, Karnataka and Odisha for management of RSW.

The foliar application of entomopathogenic fungi *Isaria fumosorosea* (@ 1x10⁸ spores/ml (5 gm /litre along with sticker 2 ml/litre) was found effective against RSW in coconut and oil palm especially when the sprayings were carried out during November – December at low incidence levels. Natural epizootics was also observed in the gardens where *I. fumosorosea* spraying was carried out. Progressive farmers, staff of Ryhtubharosakendras, Department of Horticulture officers of Government of Andhra Pradesh were trained on low cost mass multiplication of fungus.

The bio pesticide, *Metarhizium anisopliae* (NBAIR Strain Ma4) @ 5 ml/litre was effective in reducing inflorescence thrips population in mango under field conditions.

GBPUAT, Pantnagar

Microbial consortia of biocontrol agents were evaluated under glasshouse and field conditions against Rice sheath blight and chick pea wilt. Consortia such as Pant Biocontrol agent PBAT-3 (*Trichoderma harzianum* (Th) 14 + *Pseudomonas fluorescens* (Psf) 173, Th17+Psf-173, Th14+Psf-2, Th17+Psf2 and Th17+Th14) were comparatively superior than other bio agents formulations in reducing 52 % diseases and increased 25% yield in rice, lentil and chickpea crops

Conducted large scale field demonstrations using PBAT-3: 837 ha in rice; 115 ha in chickpea; 124 ha in lentil; 60 ha in pea and 59 ha in tomato and supplied 93q PBAT-3 to the farmers.

IIMR, Hyderabad

Studies on abundance of natural enemies of borers in Millets: Infestation of stem borer, *Chilo partellus* was predominant (8 - 10%) as compared to *Sesamia inferens* (< 5 %) in sorghum and about 10% larval parasitization by *Cotesia flavipes* was observed. In sorghum, incidence of *Spodoptera frugiperda* showed 5 - 6 % damage and larval parasitization was about 2-3% by *Chelonis* sp.

Management of pink borer in ragi with oil based formulations of entomofungal pathogens: Application of *Metarhizium anisopliae* 35 @ 10 ml/L at 20 & 40 DAE of crop and application of *B. bassiana* - 45 @ 10 ml/L at 20 & 40 DAE were the best and on par with soil application of Carbofuran 3G @ 20kg /ha twice at 20 and 40 DAE for the management of *Sesamia inferens* in ragi. Highest incremental yield (6.77 q/ha) over control was realized in application of carbofuran 3G granules @ 20 kg/ha which was on par with 5.62 q/ha yield gain realized in spray application of (Ma 35) @10 ml /L implying that there was 46.7% increase in grain yield over the control and 9.56% decrease in grain yield over the insecticide control.

Management of Fall army worm in sorghum with bioagents: Release of *Trichogramma chilonis* @ one card/acre twice at weekly intervals commencing at 7 & 14 DAE of sorghum followed by spray of *Metarhizium anisopliae* (Ma 35) @ 0.5 % at 20, 35 DAE was found to decrease the egg patches, larvae numbers (42.0 %) and whorl damage (59.9%) caused by *Spodoptera frugiperda*, significantly. Results revealed that there was 11.1 and 15.4 % increase in the grain and fodder yield in comparison to control.

IIHR, Bengaluru

Entomopathogens *Beauveria bassiana* (NBAIR Bb5a) @ 5 g/L followed by *Lecanicilium lecanii* (NBAIR Vl8) @ 5g/L was found significant and reduced the aphid population and showed no significant reduction in the thrips populationin capsicum under polyhouse conditions..

Heterorhabditis indica @ $2.5 \ 10^9$ IJs ha⁻¹ and *M. anisopliae* NBAIR followed by *B. bassiana* NBAIR and *B. bassiana* AAU strains were found superior in controlling ash weevils in brinjal. They were significantly superior over the control, but not superior to chemical control. *B. bassiana* NBAIR and *M. anispoliae* AAU strains were showing significantly lower damage scoring compared to other treatments.

IIRR, Hyderabad

Diversity of natural enemies have been recorded with special reference to egg parasitoids of hoppers and stem borers of rice. The three-key egg parasitoids *viz.*, *Tetrastichus schoenobii*, *Telenomus* spp. and *Trichogramma japonicum* were identified on yellow stem borer *Scirpophaga incertulas* egg masses in rice crop across the country

Indigenous bioagents viz., Trichoderma asperellum strain TAIK1, Bacillus cabrialesii BIK3and Pseudomonas fluorescens strain PIK1 were extended to farmers for large scale biointensive pest management trial at Telangana, Andhra Pradesh and Odisha after initial testing at multi-location. In BIPM modules such as bund cropping, application of Phosphorous Solubilizing Bacteria, alleyways, organic manuring, owl perches for rodent management were found to reduce insecticide use and manage pests with a benefit cost of 1.95 - 2.59 as compared to 1.77 - 2.46 in farmers' practices of chemical dependence. Disease incidence was also found to be reduced – False smut was only 2.7-5.0% in BIPM plots as compared to 6.33-11.00% in non-BIPM plots.

IIVR, Varanasi

In tomato, the maximum fruit damage due to *Tuta absoluta* was recorded during the 10th SMW (5% fruit damage) whereas lowest (1% fruit damage) was during last Week of March, 2019.

Polyphagous predator, *Nesidiocoris tenuis* was observed in abundance (maximum 4.3 bugs / apical twigs) feeding on early instar larvae of *Tuta absoluta*. Besides, it also feeds on soft-bodied insects like whitefly, jassid and aphis in tomato field.

KAU Vellayani

NBAIR Bb 5 and Chitin enriched KAU Bb 6063 @ 10^8 spores mL⁻¹ @ 20 g/ L was effective in managing rice leaf roller, *Cnaphalocrocis medinalis*, however KAU Bb 6063 was superior with 82.69 % reduction in pest population.

For rice bug *Leptocorisa acuta*, management the indigenous isolate *Lecanicillium* saksenae @ 10^7 spores mL⁻¹ was the superior treatment with 100 % control at 21 DAS (2 sprayings) at panicle initiation and milky stages followed by Bb 5 which performed equally good at 28 DAS.

Coconut RSW was found to reach peak during summer and the mean parasitisation by *Encarsia guadeloupae* was 58.38 to75.52 %. *Isaria fumosorosea* (ICAR-NBAIR Pfu-5) and Neem oil emulsion with sticker was found to be equally effective in managing RSW.

In pulses, the major pest *Aphis craccivora* could be effectively managed by chitin enriched oil formulation of *Lecanicillium saksenae* @ 10 ml/L, followed by *Lecanicillium lecanii* (NBAIRV18) NBAIR Bb5 and KAU Bb 6063 were effective in managing leaf webber, *Hymenia recurvalis* in amaranthus when sprayed by dispensing the bio capsules @ 10^8 spores mL⁻¹ @ 3 capsules L⁻¹

Fusarium wilt in cowpea was effectively managed by soil application of T. *asperillum* at monthly intervals + soil drenching and foliar spray of P. *fluorescens* at fortnightly intervals.

BIPM in rice comprising seed priming with NBAIR Bb 5 + foliar spray at vegetative phase + Trichocards from 30 DAP + foliar spray of *L. saksenae* during panicle initiation and milky stage was effective against rice bugs. It enhanced natural enemy population and reduced cost of plant protection

KAU, Kumarakom

The fungal isolate *Hanseniaspora uvarum* (Y-73), *Trichoderma harzianum* (Th-3), *T. viride* (KAU strain) and *Pseudomonas fluorescens* (KAU strain) applied as seed treatment followed by foliar spray gave effective control of anthracnose disease of vegetable cowpea.

Foliar spray of *M. anisopliae* NBAIR Ma 4 and *Lecanicillium lecanii* NBAIR V18 were found effective in reducing chilli mite.

Application of *I. fumosorosea* (Pfu-5) could bring significant reduction in the live colony count of invasive whiteflies in coconut, where it could cause 57.70 % reduction in the number of colonies, at 60 DAT as compared with the untreated palms during 2020-21.

Seed treatment, seedling dip and soil drenching with NBAIR-BATP isolate of *Bacillus albus* was highly effective in reducing bacterial wilt incidence, in tomato followed by KAU strain PN026 and NBAIR-PFDWD isolate of *P. fluorescens*.

NCIPM, New Delhi

Population dynamics of whitefly, *Bemisiatabaci* and its natural enemies in cotton: A study in farmer's field in North Zone. Dynamics of whitefly Bemisia tabaci during the cotton crop season was studied in farmer's fields in North West India from June to October 2018-2019 which indicated that the whitefly population (adults/ 3 leaves) remained below ETL in June and crossed ETL in few locations during July-August and thereafter remained below ETL in all the study locations. Whitefly (adults/3 leaves) was maximum in Fazilka (12.77) followed by Sirsa (6.79), Muktsar (3.86), Sriganganagar (3.03) and Hanumangarh (2.33). Average population (mean of the season) of Chrysopid (egg/larvae / plant) was maximum in Sirsa (2.21) followed by Fazilka (0.89), Sriganganagar (0.67) and Hanumangarh (0.47). Spider population (adults/spiderlings / plant) was maximum in Sriganganagar (0.83) followed by Fazilka (0.81), Muktsar (0.78), Sirsa (0.61) and Hanumangarah (0.17). The population of Chrysopid in the month of June was negligible which increased in mid-July and reached its peak in August and September. Mean parasitization of whitefly nymphs by Encarsia spp. was recorded maximum in Fazilka (60.90%) followed by Muktsar (55.94%), Sirsa (54.25%), Hanumangarah (45.49%) and Sriganganagar (51.95%). Dynamics of parasitization of whitefly nymphs by *Encarsia* spp. indicated that maximum parasitization was in the month of July and August and thereafter it declined with the reduction in whitefly population and pesticide applications.

Evaluation of BIPM against pod borer in chickpea in Bundelkhand region : BIPM module of chick pea pod borer consists of deep summer ploughing and field sanitation, sowing in the first fortnight of November, selection of resistant variety (RVG202), seed treatment with T. harzianum (NCIPM-TH1) @ 10 g/kg seed, intercropping with mustard, installation of pheromone trap @ 5/ha for monitoring in November and @ 30/ha for mass trapping, erection of bird perches @ 20/ha, need based application of botanical neem azadirachtin 1500 ppm @ 5 ml/L and biopesticides *Bacillus thuringiensis* krustaki @ 2×10^8 cfu /ml was found best in comparison to farmers practice where farmers applied insecticides @ 1-2 sprays against chickpea pod borer. Over all BIPM fields recorded a significant reduction in infestation of pod borer (70.52%) and disease incidence of Fusarium wilt (73.77%) and dry root rot (62.5%) compared to farmers practice. Economic analysis indicated that BIPM recorded average yield of chickpea 18.60 g/ha with B: C ratio 3.87 whereas, 14.40 q/ha yield was recorded in farmers practice with B: C ratio of 3.06. Implementation of BIPM module provided >29 % increase in seed yield and >42 % increase in net return in BIPM over FP consequently farmers earned >Rs 20000/ha extra net income over farmers practice.

PAU, Ludhiana

PAU centre has developed 14 biocontrol technologies for the suppression of insect pests. Among these, 9 technologies have been included in PAU Package of Practices namely *Trichogramma* releases against stem borer in fodder maize, integration of *Trichogramma* releases with pheromone traps against early shoot borer, top borer and stalk borer in sugarcane, *Bacillus thuringiensis* 0.5 WP and HearNPV 2%. AS against gram caterpillar in chickpea, azadirachtin 50000 ppm against leafhopper in okra and azadirachtin (1500 and 50000 ppm) against stem borers and leaf folder in rice.

Large scale demonstrations were conducted over an area of 20178 hectares for the management of borers in sugarcane, stem borers and leaf folder in rice and stem borer in maize. The dissemination of biocontrol technology has significant impact w.r.t area coverage, reduction in pest incidence (52.4-58.7% in sugarcane, 50.0-60.0% in rice and 50.1-57.8% in maize), lower input cost, higher yield and additional economic benefits to farmers.

SKUAST, Srinagar

The entomopathogenic fungi of NBAIR and biopesticides *viz.*,????? were successfully evaluated against aphids and has been proposed for the package of practices for the management of woolly apple aphid.

PJTSAU, Hyderabad

Four releases of Trichocards + 4 foliar sprays of NBAIR *Bacillus thuringiensis Bt 25* @ 2%, Trichocards + Pheromone traps @15/acre recorded lesser damage in maize by FAW and higher yield among all the biocontrol treatments and were on par with the chemical check.

Three sprays of *Lecanicillium lecanii* @ 5g/L and Neem oil 1500 ppm @ 5ml/L recorded minimum leaf hopper population in cotton.

Validated BIPM package in comparison with farmer's practices to manage *Helicoverpa armigera* and *Tuta absoluta* in tomato and reported that they recorded lesser fruit damage than control plots with higher B:C ratios in BIPM package than farmer's practices.

CAU, Pasighat

Demonstration of the biocontrol module in cabbage (mustard as intercrop @ 15:2, six release of MITS of *Trichogramma chilonis* 30 DAT at weekly interval @ 1,00,000 /release against *Plutella xylostella*, two release of *Chrysoperla zastrowi sillemi* @ 2000/release at 15 days interval against aphid and two spray of *Bacillus thuringiensis* (NBAIR BtG4) 2%) yielded (161.86 quintals / ha) than farmers practice (profenophos50 EC@ 0.05%) where it was 140.80 quintals per ha.

In brinjal, BIPM module (Soil application of *P. lilacinus* @ 20 g/m² (Root Knot Nematode management), Azadirachtin 1500 ppm @ 2 ml/L, *Lecanicillium lecanii* NBAIR V18 @ $1x10^8$ spores/ml @ 5g/L (Sucking Pests) and 8 release of *Trichogramma chilonis* @ 100,000/ha at weekly interval from initiation of flowering, spraying *Bacillus thuringiensis* NBAIR BtG4 @ 2% was the best treatment as compared to chemical treatment (Dimethoate 200 a.i./ha) showing 10.3% shoot and 12.40% fruit infestation and gave 213.60 q/ha yield.

Tomato intercropped with carrotand bordered with marigold recorded the lowest fruit borer's incidence (1.28 larvae/plant) compared to tomato alone (3.25/plant).

Lecanicillium lecanii NBAIR VI-8 was found to be best among entomopathogenic fungi tested for the management of diamond back moth and aphids in cabbage (2.15 DBM larvae/plant, 2.96 aphids/plant and head yield of 22.19 t/ha).

Trichogramma chilonis @ 1 card/acre + NBAIR Bt 25@ 2% was recorded as best treatment for the management of fall armyworm in maize (1.85 larvae/10 plants, 15.19 % plant damage and grain yield of 34.13 q / ha).

Native microbials based rhizome rot management in ginger: *Trichoderma harzianum* seed treatment (0.5%), *Trichoderma* soil application (1%), *Pseudomonas P. fluorescens* soil application (1%) resulted in 89.08% germination, 15.33 tillers/plant and rhizome yield 13.50 t/ha.

CISH, Lucknow

The root-knot index of guava caused by *Meloidogyne enterolobii* was most effectively suppressed by *Purpureocillium lilacinum* + *Bacillus* spp. followed by *Pochonia chlamydosporia*, *Trichoderma asperellum* and *Bacillus* spp. respectively. The results indicated that *P. lilacinum* + *Bacillus* spp. combination was the most effective in managing the disease and enhancing the growth of plants.

MPKV

The new allian pest, Rugose spiralling whitefly (*Aleurodicus rugioperculatus*) first time observed on coconut palms in Western Maharashtra during the year 2021-22. Parasitoid, *Encarsia* sp. and predator, *Apertochrysa* sp. were seen in the colonies of rugose spiralling whitefly on coconut in all surveyed areas.

The treatment *Trichogramma pretiosum* 1 card (2 Rel) +EPN *Heterorhabditis indica* NBAIR H38 @ 4 kg/acre recorded 25.79 per cent plant damage due to fall armyworm on maize and it was at par with treatments *Trichogramma pretiosum* 1 card (2 Rel) + *Bt* 25 2 % @ 2.0 ml/l (28.20%) and *Trichogramma pretiosum* 1 card (2 Rel) + *M. anisopliae* Ma 35, 0.5% @ 2.0 g/l (29.24%). The lowest pooled mean per cent of plant damage/plot (13.47%) was observed in the chemical treatment (Emamectin benzoate 0.4g/l) which was significantly superior over rest of the treatments.

B. thuringiensis NBAIR bt G4 was at par in reducing larval population of *H. armigera* with 4.88% pod damage and recorded grain yield 16.03 q/ha as against in standard insecticidal check of spinosad 40 SC @ 150 ml/ha with larval population of 0.34 larvae/m. 3.55% pot damage and grain yield of 17.83 q/ha on chickpea.

The treatment *Heterorhabditis indica* @ 1 x 10^5 (NBAIR WP formulation) @ 12.50 kg/ha was second superior treatment in clump mortality due to white grub (8.03%) and was at par with the treatment *Heterorhabditis bacteriophora* @ 1 x 10^5 (NBAIR WP formulation) with 9.04 % clump mortality. Highest white grub reduction was recorded in chemical control (68.38%). The next best treatments are *H. indica* @ 1.0 X 10^5 / m² (59.18 %), *H. bacteriophora* @ 1.0 x 10^5 / m², S. *carpocapsae* @ 1.0 x 10^5 / m² and S. *abbasi* @ 1.0x 10^5 / m² recorded 54.04, 49.56 and 45.55 per cent, reduction, respectively.
Large scale demonstration on biological suppression of *Spodoptera litura* with *Metarhizium rileyi* in soybean indicated that two sprays of *Metarhizium rileyi* (Farlow) *N. rileyi* 2.0 x 10^8 cfu/g were significantly superior in suppressing the larval population of *S. litura* (2.46 larvae/m row) due to fungal infection with maximum soybean yield of 16.43 q/ha with BC ratio 1.62.

Eight releases of *T. chilonis* TTS @ 50,000 parasitoids/ha at weekly interval starting from 40 days after emergence of shoots found significantly superior in reducing the sugarcane early shoot borer infestation (from 22.16 to 6.41 % dead hearts) and recorded maximum cane yield (139.64 Mt/ha) with B:C ratio 2.31.

MPUAT, Udaipur

HearNPV was validated against *H. armigera* in tomato at farmer's field. The tomato plots treated with HearNPV 2% AS showed less fruit damage (11.52%)and high yield (232.34 q/ha) as compare to control where 25% fruit damage was recorded.

TNAU

Intensive surveys were conducted to assess the status of invasive pests viz., coconut Rugose Spiralling Whitefly, Aleurodicus rugioperculatus, tomato pinworm, Tuta absoluta, papaya mealybug Paracoccus marginatus, maize fall armyworm Spodoptera frugiperda, sugarcane woolly aphid Ceratovacuna lanigera and cassava mealybug Phenacoccus manihoti and their natural enemies spiders in different agro-ecological zones and on different crops of Tamil Nadu.

The parasitization by *Encarsia guadeloupae* was ranged between 10.00 and 100.00 % in coconut gardens. A diverse array of predators viz., Aprtochysa astur, Chilo corusnigrita, Coccinella transversalis, Mallada desjardinsi, Cheilomenes sexmaculatus, Propylea dissecta, Scymnus nubilis, Scymnus saciformis and Chrysoperla zastrowi sillemi were present in association with RSW in coconut gardens.

Dipha aphidivora and Micromus igorotus were observed on sugarcane woolly aphid in Coimbatore and Erode Districts. Cassava mealybug Phenacoccus manihoti caused 30-40 % damage in cassava fields in Erode, Namakkal and Salem Districts. Hyperaspis maindroni was found to be the predominant coccinellid predator of the mealybug. Besides H. maindroni, Mallada sp. and Prochiloneurus aegyptiacus, Tetrastichus sp. were also observed. Among the parasitoid species, Homalotylus turkmenicus emerged from the coccinellid predator, H. maindroni grubs. Encyrtid parasitoid, Copidosomyia ambiguous has been found on Mallada desjardinsi eggs.

Biointensive pest management modules for the management of insect pests of brinjal, Bhendi, tomato, jasmine, cabbage, maize, chickpea, pigeonpea and coconut have been demonstrated in the farmers field. Brinjal farmers are able to manage of brinjal shoot and fruit borer with BIPM module without could spraying of 7-8 rounds of insecticides. Large scale demonstration of BIPM module for coconut has been conducted in 25 acres. Benefits of BIPM module for pink bollworm in Bt cotton has been demonstrated in 10 acres. Release of *Acerophagus papayae* for the management of *Paracoccus marginatus* in papaya, tapioca and mulberry paved the way for non-use of synthetic chemical insecticides and saved the input cost on pesticides Rs.244.5 crores annually in Tamil Nadu. *A. rugioperculatus* has been managed with release of *Encarsia guadeloupae*, *A. astur* and *C. sillemi* without the use of insecticides.

Seven parasitoids viz., Trichogramma chilonis, T. pretiosum, T. japonicum, Trichogrammatoidea bactrae, Acerophagus papayae, Bracon brevicornis and Goniozus nephantidis and three predators viz., C. silemmi, A. astur and Cryptolaemus montrouzeiri have been mass multiplied and supplied to farmers. In addition, Corcyra eggs have been supplied to research stations and breeding centers for the production of macrobials. Forty one trainings on production of biocontrol agents and use of bioagents in BIPM were given to farmers, input dealers and students. Twenty four awareness programmes on biological control were conducted in different villages.

SKUAST-Jammu

Maize + Cowpea (inter crop) + Sorghum (border crop) may be grown to reduce the *Chilo partellus* incidence in maize. Chickpea + Linseed (inter crop) + Napier / Mustard (border crop) reduces *Helicoverpa* larvae incidence and consequent pod damage.

Spraying Lecanicilliumlecanii @ 5g/L, *Beauvera bassiana* @ 5g/L or Azadirachtin @ 1500 ppm was found effective in reducing 35% guava scale, *Iceryapuhasi*.

Drenching of *Trichoderma asperellum* NBAIR-TATP strain liquid formulation @ 10ml/L was found effective in reducing 45% wilt in chick pea.

OUAT

Large scale demonstration of bio-intensive pest management module of rice was conducted (Seed treatment @ 10 g/Kg, Seedling root dip @ 10 g/L, Spray 10 g/L for diseases; Spray of azadirachtin 1500 ppm @ 3ml/litre at 45 and 65 DAT against foliar and sucking; Release of *Trichogramma japonicum* @ 100,000/ha (6 releases to be made during season) at 10 days interval starting from 25 DAT for stem borer and leaf folder infestation). The silver shoot, dead heart, white ear head and leaf folder incidence in BIPM demonstrated plots were 2.40, 4.32, 3.20 and 4.18%, respectively as compared to 3.12, 3.90, 2.56 and 3.90% infestation in farmers practice (FP) with the use of chemical pesticides. Significantly higher silver shoot (4.84%), dead heart (9.76%), white ear heads (10.76%) and LF (10.84%) infestation was noticed in untreated control. Highest yield (40.84/ha) was recorded in FP. But the yield (39.48 q/ha) in BIPM package was at par with FP. Lowest yield (31.20 q/ha) was recorded in untreated control. The benefit cost ratio in BIPM treated plots was found (1.38) as against 1.40 and 1.09 in FP and untreated control, respectively

NIPHM, Hyderabad

Evaluation of NIPHM white media for production of *Nomuraea rileyi* (=*Metarhizium*) NIPHM MRF-1 strain for management of *Spodoptera frugiperda*, Growth of *M. rileyi* was good in 2% NIPHM white media. The growth and sporulation of the fungus was assessed in the 2% NIPHM white media. The sporulation was better than the normal media. The colony forming unit of *M. rileyi* was six times ($6x10^8$) higher than the standard media where it was ($1x10^8$). The laboratory bioassay of *M. rileyi* against *S. frugiperda* using second instar larva recorded 90% mortality.

AAU, Anand

The native isolate *Trichogramma chilonis* was documented from the castor and cotton ecosystem and native isolate of *Heterorhabditis indica* – AAU-R strain (Genbank accession no. MW418203) was documented from the soil collected from TalalaSasan Gir, Gujarat.

Survey and surveillance of invasive pest rugose spiraling whitefly was carried out in coconut orchards of Junagadh district, Gujarat. The RSW infestation to the tune of 60-70% was noticed in the villages BarulaGir and Kanek, taluka Maliya. Documented the new invasive thrips, *Thrips parvispinus* in chilli fields of village Bechri, Umreth Taluka, Dist. Anand in middle Gujarat. Infestation to the tune of 20-30% was noticed.

Successfully conducted large scale demonstration trials to validate the technologies of BIPM modules in okra, cabbage, mango and pigeonpea covering the area of 580 ha..

DrYSRHU, Tirupathi

Lecanicilium lecanii (NBAIR VI8) @ 5g/L was found effective with least infestation by thrips on fruits (11.78%) followed by acephate 75SP @ with 12.64% as compared to *Beauveria bassiana* @ 5g/L (16.09%) and *Metarhizium anisopliae* @ 5g/L (16.72%) where the latter two treatments were on par with each other and maximum infestation was recorded in control with 24.83% fruits infested.

Beauveria bassiana (NBAIR Bb 5a @ 5g/L was found effective with lower infestation by rust mites?? on fruits (19.46%) while least infestation was recorded in propargite 57EC @ with 13.44% whereas with respect to green mites infestation on fruits, *Lecanicilium lecanii* @ 5g/L (15.49%) showed lowest damage followed by T2(*Metarhizium anisopliae* @ and maximum damage was noticed in control (31.59%).

YSPUHF, Solan

Trichogramma spp viz., Trichogramma achaeae, Trichogramma pretiosum, T rchogramma chilonis, Trichogramma pieridis and Trichogramma embryophagum were evaluated against apple fruit moth, Argyresthia conjugella. Maximum parasitisation was 16.6 % with T. embryophagum. The parasitism resulted by T. achaeae, T. pretiosum and T. chilonis was 5.6, 8.9 and 11.1 %, respectively, whereas, T. pieridis failed to parasitize the eggs of apple fruit moth.

Metarhizium anisopliae (10^8 conidia/g) was applied @ 30g/ tree basin mixed in well rotten farm yard manure during July- August i.e. at the time of egg hatching and emergence of new/young grubs. *Metarhizium anisopliae* treatment resulted 71.1 to 82.2 % mortality of the apple root borer grubs in different orchards, which was close to that resulted chlorpyriphos (0.06%) (77.4 - 86.6%).

Among different biocontrol agents evaluated **against leopard moth**, *Zeuzera multistrigata* **in apple**, *Heterorhabditis bacteriophora* (5000IJs/gallery) was the most effective resulting in 77.8% mortality followed by *Steinernemma feltiae* (5000IJs/gallery) and azadirachtin 1500ppm @ 2ml/L 10ml/gallery) (66.7% each). Whereas, chlorpyriphos 20 EC @ 0.04% resulted 100 % mortality.

The number of mines caused by *Tuta absoluta* in tomato was recorded which were statistically on par in both the plots (BIPM and Chemical) and varied from 0.33 to0.37 mines/leaf. The yield recorded in BIPM plots (31.3t/ha) was also statistically on par with

chemical treated plots (29.4.t/ha). The aphid population (*Macrosiphum euphorbiae*) recorded on top 10 cm length of the shoot during second week of September was 18.7 in BIPM and 23.2 numbers/plant in chemical plots.

Seed treatment with *T. asperellum* formulation @ 10g/kg seed+ soil application of *T. asperellum* formulation after mixing with FYM (10g/Kg FYM) @ $40g/m^2$ provided significantly better control of *Fusarium* wilt of pea (10.67 %)as compared to already recommended chemical treatment.

NRRI

NBAIR isolates i.e., NBAIR-PEOWN (*Pseudomonas entomophila*), NBAIR-BATP (*Bacillus albus*), NBAIR-BtoYPS (*Lysinibacillus sphaericus*), NBAIR-PFDWD (*Pseudomonas fluorescens*) and NBAIR-TATP(*Trichoderma asperellum*) shown lesser dead heart and white ear-head damage caused by rice yellow stem borer, leaf damage caused by rice leaf folder but increased plant height and grain yield than the untreated control. Based on this lead result, NBAIR-BATP (*Bacillus albus*) which performed better was carried forward for the multi-location evaluation against rice insect pests under field conditions.

NBAIR-PFDWD (*Pseudomonas flourescens*) was the most effective isolate against rice diseases *viz.*, sheath blight, brown spot and blast with lesser Percent Disease Index (PDI) followed by NBAIR-TATP (*Trichoderma asperellum*) under field conditions. NBAIR-PFDWD treatment enhanced the plant growth of rice plants in terms of plant height, fresh shoot weight, fresh root weight, dry shoot weight, dry root weight and yield as compared with control plants. Based on this lead result, NBAIR-PFDWD (*Pseudomonas flourescens*) which performed better was carried forward for the multi-location evaluation against rice disease pests.

Bacillus thuringiensis NRRI Bt Biocb 7 was identified to be effective in managing leaf folder of rice, and BS-5 (*Bacillus amyloliquefaciens*), BS-6 (*Bacillus subtilis*), BS-39 (*Bacillus cereus*) effective against rice diseases. Apart from microbials, macrobials *viz.., Trichogramma* spp., and *Bracon* spp. etc. were also mass reared and supplied for farmers for effective management of rice yellow stem borer and leaf folder of rice.

KAU, Thrissur

Large scale validation of BIPM practices in rice at Palakkad District demonstrated the superiority of BIPM practices over farmers' practices. Adoption of BIPM practices have consistently led to reduction in cost of cultivation by an average of 6.0 % and an increase in yield by 23.0 %. The cost benefit ratio, at an average of 2.18 has been almost double for BIPM fields as compared to 1.40 for non BIPM fields.

Spraying with *Beauveria bassiana* was shown to be effective in managing pseudo stem weevil in banana. Plots treated with *B. bassiana* recorded 27.38 % infestation as against 35.5 % in case of untreated plots.

BIPM in brinjal resulted in significantly lower infestation who and fruit borer as well as mealybug. BIPM plots also recorded significantly higher fruit yield compared to untreated plots. Adoption of BIPM practice could be a viable alternative for chemical insecticides. The entomopathogenic fungus *Beauveria bassiana* registered lower pod damage??? in cowpea which is on par with the chemical check, malathion recommended??.

The anthocorid predator *Blaptostethes pallescens* released twice at 20/m row was as effective as spiromesifen formulation?? Concentration?? in managing ??? spider mites in cucumber under polyhouse conditions.

Surveys for prevalence of cassava mealybug revealed that that four mealybug species viz., Paracoccus marginatus (36.72%), Ferrisia virgata (29.69%), Phenacoccus manihoti (28.90%) and Pseudococcus jackbeardsleyi (4.69%) infested the cassava plants simultaneously, forming a complex. Predators like ape fly and green lacewings were encountered frequently in the cassava field. Entomopathogenic fungi, viz., Lecanicillium araneicola, Simplicillium sp., Pupueocillum lilacinum and Lecancillium psalliote were isolated from the mummified cadavers of Paracoccus marginatus.

Incidence of invasive pests like wax scale on cassava, hard scale on mango, *Pseudococcus jackbeardsleyi* on glyricidia, *Rastrococcus iceryoides* on *Triumfetta rhomboidea* and mealybug *Pseudococcu slongispinus* on coconut were reported during the period.

IGKV

Parasitization of *Braconhebator* was recorded on DBM, *Plutella xylostella* on cabbage. Maximum parasitization (32 %) was recorded by *Cotesia flavipes* followed by *Bracon* spp. (20%) and *Bracon hebator* (10%).Release of *Bracon hebator* under caged condition was effective in managing the population of DBM in cabbage crop. Initially after 3 days of application it showed 3.33 number of dead larvae which increased to 5.33 and 7.66 after 7 and 14 days of treatment.

Maximum paddy grain yield/plot (31.56 kg) and per acre(1303.22) was obtained in BIPM treatment followed by farmer's practice (28.88kg)/plot and (1284.63Kg) and control (25.25 kg) and (1122.87kg) per plot and per acre respectively.

XXV. Priorities, programmes and research projects

CPCRI

a) Survey, monitoring and biodiversity of fauna

(i) Surveillance of exotic whiteflies and population assessment of natural enemies Salient outcome

• Morphological identification of the four non-native whiteflies *viz.*, rugose spiralling whitefly (RSW) (*Aleurodicus rugioperculatus* Martin), Bondar's nesting whitefly (BNW) (*Paraleyrodes bondari* Peracchi), non-native nesting whitefly (*Paraleyrodes minei* laccarino) and the palm whitefly (*Aleurotrachelus atratus* Hempel) was established by using puparium (compound pore and lingula features) and adult features (male genitalia and cement gland) [Fig 1] as well as molecular characterization using the cytochrome c-oxidase subunit 1 (COI) gene was established with phylogenetic relationship and nucleotide sequences of all five exotic whiteflies are deposited in Gen Bank.

Fig. 1 Aleurodicus dispersus Russell a) colony b) puparia c) adults d) lingula e) compound pore Aleurodicus rugioperculatus Martin f) colony g) puparia h) adults i) lingula j) compound pore Paraleyrodes bondari Peracchi k) eggs l) puparia m) adult n) lingula o) male genitalia Paraleyrodes minei laccarino p) eggs q) puparia r) adults s) compound pore t) male genitalia Aleurotrachelus atratus Hempel u) eggs v) nymphs w) puparia x) adult v) lingula

- BNW, *Paraleyrodes bondari* was found to co-occur with solanum whitefly (*Aleurotrachelus trachoides*), areca whitefly (*Aleurocanthus arecae*), citrus blackfly (*Aleurocanthus woglumi*), guava woolly whitefly (*Aleurothrixus floccosus*) and rugose spiralling whitefly (*Aleurodicus rugioperculatus*). Under such co-occurrences, identification of different life stages of co-existing whiteflies would be confusing for which correct diagnosis is very important.
- Occurrence of the two non-native nesting whiteflies (*P. bondari* and *P. minei*) as well as the sooty mould scavenger beetle, *Leiochrinus nilgirianus* Kaszab (Tenebrionidae: Coleoptera) is reported in the country for the first time in 2018.
- The population of *A. rugioperculatus* which was as high as 4.5 live colonies per leaflet in 2019 got diminished to as low as 1.0 live colony per leaflet in 2022. Similarly, the population of *P. bondari* was found maximum (4.0 live colonies /leaflet) in 2019 got reduced to <1.0 live colony in 2022.
- Parasitism of *A. rugioperculatus* by the aphelinid parasitoid, *Encarsia guadeloupae* Viggiani ranged from 20%-70% subduing the flare up of the pest in Kerala.
- A wide array of natural predators such as *Apertochrysa* sp. (Chrysopidae: Neuroptera), *Jauraviapallidula* Motschulsky (Coccinellidae: Coleoptera), *Cybocephalus* sp. (Cybocephalidae: Coleoptera) were widely prevalent regulating the exotic whitefly complex on coconut to the tune of 5% to 7%.
- The population of RSW was found to be positively correlated with maximum temperature (r=0.89) and difference in temperature (r=0.71), whereas, negative correlation was observed with relative humidity (r=-0.69) and rainfall (r=-0.49). Thus, both weather factors and parasitic potential of the aphelinid parasitoid, *E. guadeloupae* play a critical role in the population dynamics of RSW.

- Chowghat Orange Dwarf (COD). Malayan Green Dwarf coconut varieties and the hybrid Kalpa Sankara (CGD x WCT) are found to be relatively susceptible, however, West Coast Tall (WCT) and East Coast Tall (ECT) are found to be relatively tolerant.
- In the surveillance programme, more than 1.3% of grubs of coconut rhinoceros beetle (*Oryctes rhinoceros*) collected from natural breeding zone has been virosed in the country with characteristic gut clearing and prolapse symptoms. Molecular characterization of *CO1* gene of coconut rhinoceros beetle collected from Kayamkulam, India had no A to G transition indicating the absence of CRB-Guam haplotype in the country.
- Some potential invasive pests *viz.*, Coconut leaf beetle, *Bronstispa longissima* Gestro (Chrysomelidae: Coleoptera) and false coconut scale *Aspidiotus rigidus* Reyne (Diaspididae: Hemiptera) ravaging South-East Asian coconut are at our doorsteps for possible entry at any time. So far, they are not reported in our surveillance surveys.

b) Biological suppression

(i) Biological control of rugose spiralling whitefly in coconut

Salient outcome

- Under good nutrition management, palms treated with neem oil (0.5%), water spray and *Isaria fumosorosea* (5g per litre) reduced the RSW (*A. rugioperculatus*) population significantly ranging from 0.78 to 1.08 from the initial population of 1.51 to 3.01. However, highest reduction of RSW population by 74% was recorded on neem oil treated palms.
- Parasitism by *E. guadeloupae* was not influenced by bioagents or botanicals and ranged from 38% to 58%.
- Conservation biological control (Fig 2) practices reduced the RSW population in the most efficient manner after four months by the natural build-up of defenders, pollinators and scavenger beetles for which pesticide holiday approach is crucial in the bio-suppression of exotic whitefly complex and it enhanced ecosystem vitality and delivered economic benefits to the tune of 1760cr rupees

Fig. 2 Conservation biological control of invasive whiteflies infesting coconut

a) Encarsia guadeloupae emerging from puparium of RSW b) Encarsia guadeloupae c) Apertochrysa sp. d) Jauravia pallidula
e) Cybocephalus sp. f) Menochilus sexmaculatus g) Scymnus nubilis h) Leiochrinus nilgirianus i) L. nilgirianus feeding on sooty mould j & k) Aschersonia sp. l) Unidentified

c) Evaluation and efficacy of bioagents

(i) Stage specific parasitoids against black headed caterpillar

Rearing system, release norms and mass production of larval parasitoids *viz.*, *Goniozus nephantidis* and *Bracon brevicornis* (pre-pupal parasitoid, *Elasmus nephantidis* (and pupal parasitoid, *Brachymeria nosatoi* using factitious host, *Corcyra cephalonica* are well standardised and available for commercialization.

(ii) Microbials

Green Muscardine fungus

The green muscardine fungus, *Metarhizium majus* @ 5×10^{11} per cubic meter was found effective for application on the breeding grounds of coconut rhinoceros beetle, *Oryctes rhinoceros* especially in the farm yard manures pits, fallen logs *etc*. Cost-effective mass production technologies using semi-cooked rice and pressure cooker was standardised and popularized among the women farmers in different panchayats of the state. Area-wide delivery using dairy farmers are very important in pest reduction.

Oryctes rhinoceros nudivirus (OrNV)

This unique pest-specific nudivirus (OrNV) was a potent bioagent used in the bio-suppression of coconut rhinoceros beetle (*Oryctes rhinoceros*) in Island system and successfully demonstrated in Lakshadweep and Bay Islands. Release of 12 virosed beetles per hectare reduced the pest damage significantly in the Islands through auto-transmission approach.

Entomopathogenic nematode capsules (EPN cadaver capsules)

A very potent and high efficacious entomopathogenic nematode *Steinernema* sp., mass multiplied on greater wax moth larvae, *Galleria mellonella* and the cadaver of which are made into capsules for the suppression of red palm weevil. Leaf axil filling of these capsules (one each in top most five axils) is being evaluated for area-wide application and validation. The emerging infective juveniles could invade the grubs of red palm weevil upon infestation and rescue the palm.

(iv) Botanical formulation Botanical cake and paste

ICAR-CPCRI has developed two eco-friendly botanical products *viz.*, a cake as well as a paste for the repulsion of coconut rhinoceros beetle. Methanolic and hexane extracts of botanicals (*Clerodendrum infortunatum & Aegera tum conyzoides*) admixed with neem oil was developed as a soap /cake for leaf axil filling. In addition, grease admixed with cashew nut shell liquid and neem oil was made as a paste for smearing on the pest landing zone of spear leaf. Both the products could be applied on juvenile palms in the spear leaf zone for the repulsion of coconut rhinoceros' beetle and shielding juvenile palms from pest attack for about two months.

d) Area-wide demonstration trials

i) Bio-suppression of exotic whitefly complex

Pesticide holiday approach, conservation biological control using the aphelinid parasitoid, *Encarsia guadeloupae*, the chrysopid, *Apertochrysa* sp. lady beetles and *in situ* habitat preservation of sooty mould scavenger beetle, *Leiochrinus nilgirianus* along with soil test-based nutrition management were found effective in the bio-suppression of invasive whitefly complex infesting palms. It was well demonstrated in South Kerala conditions.

Management of black headed caterpillar using *Goniozus nephantidis* and *Bracon brevicornis* is endemic areas of Kerala

Salient outcome

- Moderate incidence of the black headed caterpillar to the tune of 30.6% was observed in coconut gardens at Mogral Puttur, Kasaragod district during October 2019 and augmentative release of *Goniozus nephantidis* and *Bracon brevicornis* @ 20 parasitoids / palm could reduce pest incidence significantly to 11.4%, 3.0% and 1.1% in March 2020, August 2020 and March 2021, respectively. Palm health has also improved with good nut set in a period of 18 months.
- Laboratory maintenance of parasitoids *viz.*, *Goniozus nephantidis* and *Bracon brevicornis* was continued and these parasitoids were supplied to State Parasite Breeding Stations and farmers as per demand.
- This is one of the classical success stories of augmentative biological control which could invariably reduce the pest incidence in most of the districts of Kerala ever since its commencement in 1950's by delivery of the bio-agents through boat laboratory.

(iii) Converging biological suppression approaches for area-wide management of coconut rhinoceros beetle

Salient outcome

- More than 400kg of green muscardine fungus, *Metarhizium majus* mass multiplied in semi-cooked rice was distributed to dairy farmers in Vallikunnam panchayat
- The application procedure of the entomopathogenic fungus on the breeding sites was demonstrated by ICAR-CPCRI Crop Protection Scientists through sensitization programmes covering all the wards in the village at a regular time period under the co-ordination of the Agricultural Officer/Dairy Society/Karshaka sangamam. The farmers were empowered on the technical know-how, famer-participatory technology dissemination as well as sustainable impact of the technology. The leaf and spear leaf damage were found as 19.8% and 38.6%, with reduction by 7.91% and 5.39% over the previous year, respectively.

e) Technologies developed and adopted

(i) Bio-suppression of leaf eating caterpillar using augmentative release of stage specific parasitoids.

(ii) Area-wide management of coconut rhinoceros beetle by delivery of green muscardine fungus, *Metarhizium majus* on to the breeding grounds (cow dung pits, wooden logs *etc.*, of the pest.

NCIPM

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

• A survey was conducted in Bajra growing area of Agra, Firozabad and Etawah district of UP during 3-5 September 2020. During survey in Agra and Firozabad district, FAW incidence was recorded at low level.However, in few fields 10-20 per cent FAW infestation was observed in younger crop (30-40 days) in the village Shankerpur, Jaraulikalan. During survey in the Etawah district severe FAW infestation in bajra field was recorded in the village Labedi, Harnarayanpura, Ababakkarpur, Himmatpura, Jaitpura, Birodhi, In younger crop of 30-45 days old, >50 % plant were found infested. Overall infestation ranged between 5-30 per cent.

• Farmers were spraying insecticides especially Cypermethrin + cholorpyriphos based upon the advice of pesticides dealer.

Population dynamics of whitefly, *Bemisia tabaci* (Gen) and its natural enemies in cotton: A study in farmers' field in North Zone

- Dynamics of whitefly during the cotton crop season was studied which indicated that the whitefly population (adults/ 3 leaves) remained below ETL in June and crossed ETL at few locations during July-August and thereafter remained below ETL in all locations. Whitefly (adults/3 leaves) was maximum in Fazilka (12.77) followed by Sirsa (6.79), Muktsar (3.86), Sriganganagar (3.03) and Hanumangarh (2.33).
- Average population (mean of the season) of Chrysopid (egg/larvae per plant) was maximum in Sirsa (2.21) followed by Fazilka (0.89), Sriganganagar (0.67) and Hanumangarh (0.47). Spider population (adults/spiderlings per plant) was maximum in Sriganganagar (0.83) followed by Fazilka (0.81), Muktsar (0.78), Sirsa (0.61) and Hanumangarah (0.17). The population of Chrysopid in the month of June was negligible which increased in mid of July and reached its peak in Aug and September. However, spiders were present in large numbers from the beginning of the season and continued throughout the season. Mean (average of the season) parasitization (percent) of whitefly nymphs by *Encarsia* spp or other parasitoids was recorded maximum in Fazilka (45.87, Range 28.74 60.90) followed by Muktsar (45.10 Range 23.08-55.94), Sirsa (43.66 range 26.00-54.25), Hanumangarah (34.10 range 22.27-45.49) and Sriganganagar (30.31; range 19.62-51.95). Maximum parasitization in the month of July and thereafter it declined with the reduction in whitefly population and pesticide applications.

Evaluation of Biointensive Integrated Pest Management against pod borer in chickpea in Bundelkhand region

 Evaluation of Biointensive Integrated Pest Management against pod borer in chickpea in Bundelkhand region' was carried out at farmer's field in village Chokari (25°35'15.4"N 79°13'00.5"E) of district Jhansi with the help of district KVK during *Rabi* 2020 and Rabi 2021 in five acres in farmers participatory mode. BIPM module consist of deep summer ploughing and field sanitation, sowing in the first fortnight of November, selection of tolerant/resistant variety (RVG202), seed treatment with *T. harzianum* (NCIPM-TH1) 10 g/kg seed, intercropping with mustard, installation of pheromone trap for monitoring @ 5/ha in November and 30/ha for mass trapping on 10 Feb 2022, erection of bird perches 20/ha, need based application of botanical neem azadirachtin 1500 ppm @ 5 ml/litre and biopesticides *Bacillus thuringiensis* krustaki (2×10⁸cfu per ml). In farmers practice (FP) fields, farmers used insecticides without recommendations based up on the advice of pesticides dealers 1-2 spray against chickpea pod borer. Over all BIPM fields recorded a significant reduction in infestation of pod borer (70.52%) and disease incidence of collar rot (77.4%), *Fusarium* wilt (73.77%) and dry root rot (62.5%) over FP fields and remained below ETL. Economic analysis indicated that BIPM field recorded average yield of chickpea 18.60 q/ha with B: C ratio 3.87 whereas, 14.40 q/ha yield was recorded in FP fields with B: C ratio of 3.06. Implementation of BIPM strategy provided >29 per cent increase in seed yield and >42 per cent increase in net return in BIPM over FP consequently farmers earned >Rs 20000/ha extra net income over farmers practice.

UBKV, Pundibari

c) Evaluation and bio efficacy of Biopesticides:

Field evaluation of bio-pesticides against tea red spider mite, Oligonychus coffeae:

• Among the tested fungal bio-pesticides, *Lecanicilium lecani* (NBAIR strain) reduced the mite population better which is statistically at par with Azadirachtin 10000 ppm and *Beauveria bassiana* (NBAIR strain).

Evaluation of Fungal pathogens against chilli yellow mite, *Polyphagotarsonemus latus*:

• The treatment with Spiromesifen 240 SC ranked best in controlling the mite in both the spray. Among the tested fungal biopesticides, *Lecanicilium lecani* (NBAIR strain) significantly reduced the mite population.

Field evaluation of bio-pesticides against mustard aphid:

• Among the selected bio-pesticides, Azadirachtin 3000 ppm @ 2.5 ml/lit treated plots showed the lowest number of aphids per shoot followed by *Beauveria bassiana*.

Technologies developed and adopted during the review period:

- 1. Release of *Trichogramma chilonis*, *T. japonicum* @ 50000- 100000/ ha for 2-3 times against rice borer pests.
- 2. Fungal bio-pesticides, *Lecanicilium lecani* (NBAIR VI-8) $(1 \times 10^8 \text{ spores/g})$ @ 5 gm/litre of water significantly reduced the mite population in tea.
 - 3. *Lecanicillium lecani* (NBAIR VI-8) $(1 \times 10^8 \text{ spores/g})$ @ 5 gm/litre of water significantly reduced the whitefly in cucumber.

PAU, LUDHIANA

Brief achievements:

Surveys, monitoring and biodiversity of fauna:

Cotton: Natural enemy fauna comprising 10 insect species (8 predators and 2 parasitoids) under 5 families; 7 species of arachnids in 4 families constituting a total of 17 species were recorded from the cotton fields in Punjab including coccinellids, chrysopids, spiders and whitefly parasitoids. The population of *Chrysoperla* was maximum till end July, but declined thereafter. However, spider population was at peak during August month. Among parasitoids, *Encarsia lutea* (Masi) and *Encarsia Sophia* (Girault& Dodd) were the two parasitoids that emerged from whitefly pupae. The parasitization of whitefly by *Encarsia* spp. in different cotton growing areas of Punjab was 5 to 10 per cent. The parasitization was comparatively more in unsprayed plots as compared to sprayed plots.

Maize: Seventeen natural enemies including ten parasitoids (Trichogramma chilonis, Chelonus formosanus, Chelonus blackburni, Campoletis flavicincta, Charops bicolor,

Temelucha sp., *Cotesiarufricus*, *Microplitis* sp., *Campoletis* sp. and unidentified Braconid) and seven predators (*Eocanthecona furcellata*, *Cheilomenes sexmaculata*, *Paederus* sp., *Neoscona theisi*, *Oxyope ssp.*, unidentified Carabid beetle and unidentified Coccinellid beetle) were recorded to be associated with fall armyworm on maize/fodder maize. Among parasitoids, egg-larval parasitoid, *Chelonus formosanus* was the predominant species (72.2 % abundance) under Punjab conditions.

Rice: Eleven spider species, from 7 families were recorded from rice growing areas of Punjab. Among these, *Neoscona theisi* (72.05 % abundance) was the predominant species in the central plain zone followed by *Tetragnatha javana* (14.29% abundance). However in the south western districts, *Tetragnatha javana* (45.64 %) was predominant by *T. maxillasa* (30.20%) and *Neoscona theisi* (18.21%). The spider diversity was comparatively more in central districts than south western districts of Punjab. The key parasitoids collected from rice fields were *Trichogramma chilonis*, *T. japonicum*, *Stenobracon* sp., *Bracon* sp. and *Xanthopimpla* sp.)

Sugarcane: *Fulgoraecia melanoleuca* (nymphal and adult parasitoid) was recorded to be key parasitoid infesting *Pyrilla perpusilla* on sugarcane crop. Among different agro-climatic zones of Punjab, the natural parasitism of pyrilla was more in central plain and sub-mountainous undulating zones as compared to Western zone of Punjab. The parasitoid remained active in overlapping stages during the months of April to November with peak activity in September month. It overwintered in cocoon stage from December to March months in sugarcane trash.

Wheat, oilseed and cole crops: Coccinellids (*Coccinella septempuntata* and *Cheilomenes sexmaculata*) and syrphids were recorded from wheat, oilseed and cole crops. *Cotesia glomerata* was recorded from *Pieris brassicae* on oilseed and cole crops.

Gram and tomato: Larval parasitoid, *Campoletis chloridae* was found to be parasitizing *Helicoverpa armigera* (5-10 % parasitism) in gram and tomato crop.

Polyhouse pests: The diversity of insect pests was recorded on brinjal, capsicum, cucumb

er and tomato crop grown under net house conditions. In brinjal, whitefly (*Bemisia tabaci*) and red spider mite (*Tetranychus urticae*) were recorded, out of which red spider mite was predominant during spring season crop. In capsicum, aphid (*Myzus persicae*), yellow spider mite and red spider mite were recorded during March, September-October and April-May, respectively. In cucumber, major pests recorded were red spider mite, leaf miner (*Liriomyza* sp.), *B. tabaci* and *M. persicae*. Amongst these, red spider mite and whitefly were predominant species during spring and rainy season crops, respectively. The major insect pest in tomato was whitefly *B. tabaci*, the incidence of which was observed at peak during the months of April and May.

Isolation of microbials from various agro-ecological zones of Punjab

A total of 98 soil samples at root zone depth were collected from five different spots in polythene bags and brought to laboratory along with infected larval cadavers. The samples were processed for isolation of entomopathogens. Isolates of *Beauveria bassiana* (2), *Metarhizium anisopliae* (1), *Aspergillus flavus* (3), *Aspergillus terreus* (1) and *Lysinibacillus macroides* (1) were identified by molecular characterization. One SpltNPV was isolated from *Spodoptera litura* larvae collected from vegetable crop field.

a) Biological Suppression

- 1. Habitat manipulation for the management of whitefly on Bt cotton : BIPM practices involving cultivation of Bt cotton crop following recommended agronomic practices, growing sorghum as a barrier crop, installation of yellow sticky traps, augmentative releases of chrysopid and two applications each of neem (azadirachtin 10000 ppm) and *Lecanicillium lecanii* resulted in 38.3 per cent reduction in whitefly incidence as compared to 78.2 per cent in chemical control. The predator population was more in BIPM (1.02/ plant) as compared to chemical control (0.50/ plant) and untreated control (0.84/ plant). The yield increase in BIPM and chemical control was 6.36 and 11.82 per cent over untreated control, respectively.
- 2. Management of plant hoppers through BIPM approach in organic *basmati* rice : BIPM practices involving cultivation of recommended variety, optimum time of transplanting (1st fortnight of July) and proper spacing (20 x 15 cm), green manuring, alleyways of 30 cm after 2 m, water management (alternate wetting and drying), erection of straw bundles @ 20/ha, increasing floral diversity through flowers (marigold and balsam) on bunds and one spray each of neem (azadirachtin 50000 ppm @ 200 ml/ ha) and biopesticide (*Metarhizium anisopliae* @ 2.5 kg/ha) resulted in 33.29 per cent reduction in plant hoppers population over untreated control. The spider population was more in BIPM as compared to control plot. The yield increase in BIPM was 4.98 per cent over untreated control.
- 3. Biointensive management of fall armyworm in maize : Among different biocontrol agents, lowest plant damage and larval population of fall armyworm was recorded in Tc + NBAIR-Bt 25 followed by Tc + NBAIR-Ma 35 and Tc + NBAIR-Bb 45 as compared to untreated control. However, chemical control was significantly better in reducing the plant infestation and larval population as compared to all treatments and also recorded highest grain yield.
 - 4. BIPM module for management of *Helicoverpa armigera* on chickpea : BIPM module 1 involving timely sowing, raising marigold as trap crop, erection of bird perches (8/acre) and two sprays of *Bacillus thuringiensis* (2 kg/ha) at 15 days interval starting from pod initiation stage was comparatively better in reducing the pod damage (2.90 %) in gram than BIPM module 2 (involving 2 sprays of HaNPV strain (1.5x10¹² POBs/ha) @ 500 ml/ha) (5.95 %) and untreated control (11.21 %). However, chemical control was the best treatment (1.03 % pod damage).
 - 5. Bio-intensive pest management of *Helicoverpa armigera*, *Tuta absoluta* and sucking pests of tomato : BIPM practices involving Raising marigold as trap crop, pheromone traps @ 1 trap per plot, *Trichogramma pretiosum* @ 50,000 per release (6 releases) and spray of azadirachtin 1500 ppm @ 2 ml/liter water and spray of *Lecanicillium lecanii* (NBAIR) 1x 10⁸ spores/ g @ 5g/lt for sucking pests recorded 28.92 per cent reduction in fruit damage over untreated control. The fruit yield in BIPM (27.74 q/ha) was at par with chemical control (31.88 q/ha).
 - 6. Evaluation of biocontrol agents for the control of sucking pests in capsicum under polyhouse : Among various biocontrol agents, chrysopid releases @ 4 larvae/ plant (65.8% reduction over control) and *Lecanicillium lecanii* 1 x 10⁸ spore/g @ 5 g/ litre of water (66.4% reduction over control) were significantly better as compared to other

biocontrol treatments. However highest reduction (83.5% reduction over control) was recorded in the chemical control.

- 7. Management of sucking pests in tomato under polyhouse conditions : Biointensive module involving chrysopid releases @ 4 larvae/ plant + yellow sticky traps @ 4 per 250 m² (6.91 aphids/plant & 2.15 whiteflies/plant) were significantly better as compared to Azadiractin 5% (2 ml/ litre of water) and *Lecanicillium lecanii* 1 x 10⁸ spore/g (10 g/ litre of water) sprays and untreated control. However, lowest population (2.06 aphids/plant; 1.07 whiteflies/plant) was recorded in chemical control.
- 8. Bio-intensive management of fruit borer, *Conopomorpha sinensis* in litchi : BIPM practices involving ploughing in orchard during March-April, clean cultivation, regular collection and destruction of fallen infested fruits during May-June and releases of *T. embryophagum* @ 4000 parasitized eggs per tree 6 times at 7-10 days interval starting from flower initiation to colour break stage were significantly better in reducing the fruit borer damage (19.40 %) as compared to farmer's practice (26.80 %) and untreated control (60.60 %). The yield was also significantly more in BIPM (60.70 q/acre) as against farmer's practice (56.59 q/acre). However, lowest yield was recorded in untreated control (26.21 q/acre).
- **9.** Integration of botanical/microbials and insecticide spray schedule for the management of pod borer complex in mungbean : Among various treatments, minimum pod damage (8.98%) was recorded in treatment with both sprays of spinosad 45 SC and it did not differ significantly from treatment with first spray of *Bt* formulation and second of spinosad 45 SC (9.52%) and treatment with both sprays of *Bt* formulation (10.23 %). However significantly higher pod damage (20.49 %) was recorded in untreated control.
- c) Evaluation and bioefficacy of biopesticides:
- 1. Field evaluation of biopesticides for the management of whitefly on Bt cotton: Among biopesticides/botanicals, neem (azadirachtin 10000 ppm @ 1250 and 1500 ml/ha) and biopesticide (*Lecanicillium lecanii* @ 2500 and 3000 ml/ha) were comparatively better than other treatments (*Beauveria bassiana* and *Metarhizium anisopliae*) in reducing whitefly population on Bt cotton. However, significantly lower population was recorded in chemical treatments (spiromesifen 240 SC @ 500 ml/ha & diafenthiuron 50 WP @ 500g/ha).
- 2. Evaluation of NBAIR Bt formulation against pod borer complex in pigeonpea: NBAIR Bt formulation (NBAIR Bt G4 @ 2 %) resulted in 48.1 per cent reduction in pod damage over untreated control as compared to 67.5 per cent in chemical control (spinosad 45 SC @ 150 ml/ ha). The yield in chemical control (11.58 q/ha) and NBAIR Bt G4 (10.74 q/ha) was significantly better than untreated control (9.35 q/ha).
- 3. Field evaluation of NBAIR entomopathogenic strains against stem borer in fodder maize : Among the four NBAIR isolates (Bb-5a, Bb-23, Bb-45, Ma-35), Ma-35 isolate of *Metarhizium anisoplae* and Bb-5a isolate of *Beauveria bassiana* were significantly effective in reducing the incidence of leaf injury (4.74 and 4.69%) and dead hearts (3.05 and 2.59%) and recorded highest fodder yield of 146.62 and 148.59 q/ha, respectively. However chemical control (chlorantraniliprole 18.5 SC @ 100 ml/ha) was the best treatment.

- 4. Evaluation of *Bt* formulations and bioagent against stem borer in *kharif* maize : Commercial Bt formulations (Delfin WG and Dipel 8 L) resulted in 68.8 and 65.6 per cent reduction in dead heart incidence over control, respectively as compared to 87.1 percent in chemical control (chlorantraniliprole 18.5 SC @ 75 ml/ha) and 47.3 per cent in *Trichogramma* releases @ 1,00,000/ ha (10 and 17 days old crop). However, untreated control recorded significantly lower dead hearts (15.50 %) and yield (41.02 q/ha).
- 5. Evaluation of *Pseudomonas* (Pantnagar Strain) against sheath blight in rice: The disease incidence and severity was significantly less inPBAT-3 strain (*Pseudomonas fluorescence*) as compared to untreated control. However, chemical control (Tilt 25 EC @ 500ml/ha) was the best treatment and also recorded higher yield.
- 6. Evaluation of microbial antagonists for the management of foot rot of *kinnow* caused by *Phytophthora* spp.: Among microbial antagonists, NBAII-PWDWD *Pseudomonas fluorescence* was significantly better in the management of foot root disease in *kinnow* than other bio-formulations, *Pseudomonas fluorescence* (commercial talc formulation), *Trichoderma viride* (commercial talc formulation) and *Trichoderma harzianum* (commercial liquid formulation) and also recorded higher yield. However, chemical control (Curzate M-8 @ 25g/10 litre water/ tree) was the best treatment.
- 7. Evaluation of microbial antagonists for the management of Ascochyta blight disease in pea: Among microbial antagonists, the disease incidence (39.76 %) and severity (35.53 %) was lowest in *Pseudomonas flouresecence* (NBAIR-Pf DWD) and was significantly better than untreated control (54.32%). However, chemical control recorded 25.43 per cent disease incidence and 26.61 per cent disease severity.
- d) Brief about each large scale demonstration trials:
- **1.** Large scale demonstrations of proven biocontrol technology against borers (early shoot borer, top borer and stalk borer) in sugarcane using Trichogrammids (tts)
 - Biocontrol technology involving augmentative releases of egg parasitoids, *Trichogramma chilonis* and *T. japonicum* was demonstrated in sugarcane against borers on large scale at farmers' field in collaboration with Sugar mills, Krishi Vigyan Kendras (KVKs) and Farm Advisory Service Centres (FASCs) in various districts of Punjab over an area of 4493, 4806, 4823, 2004 and 2915 hectares during 2017, 2018, 2019, 2020 and 2021, respectively.
 - Against stalk borer, multiple releases of *T. chilonis* wasps were done at 10 days interval (50,000 wasps /ha / release x 10 releases) from July to October. For early shoot borer and top borer, augmentative biological control consisted of multiple releases of *T. chilonis* (50,000 wasps/ ha / release x 8 releases) and *T. japonicum* (50,000 wasps/ ha/ release x 8 releases), respectively at 10 days interval from mid-April to end-June.
 - Based on the pooled mean of 5 years, the dissemination of biocontrol technology in sugarcane resulted in reduction in incidence of early shoot borer (54.9 %), top borer (53.5 %) and stalk borer (57.4 %) over untreated control and gave higher yield with additional economic benefits of Rs. 16205 to 19774/- per ha during different years.

2. Large scale demonstrations on bio-intensive pest management in organic *basmati* rice

- The proven BIPM technology involving seed bio-priming with *Trichoderma harzianum* @ 15g/ kg of seeds for foot rot disease, mechanical control by passing the 20-30 m long coir/jute rope for leaf folder and augmentative releases of *T. chilonis* and *T. japonicum* each @ 1,00,000 parasitoids/ ha, 5-6 times at weekly interval starting from 30 days after transplanting (DAT) for stem borers and leaf folder was demonstrated on large scale in collaboration with KVKs and FASCs at farmers' field in various districts of Punjab over an area of 81, 118, 131, 124 and 139 hectares during 2017, 2018, 2019, 2020 and 2021, respectively in organic *basmati* rice.
- Based on the mean of 5 years, the mean reduction of dead heart and white ears incidence was 54.2 and 50.1 per cent, respectively in BIPM fields as compared to untreated control. Similarly, leaf folder damage was significantly lower in BIPM fields with an overall mean reduction of 57.8 per cent. The yield increase in BIPM fields gave additional monetary returns of Rs. 7070 to 8200/- per ha.
- **3.** Large scale demonstrations of proven biocontrol technology against maize stem borer, *Chilo partellus* using *Trichogramma chilonis* (tts)
 - Large scale demonstrations on the biological control of maize stem borer, *C. partellus* using two releases of *T. chilonis* @ 1,00,000 parasitoids/ha on 10 and 17 days old crop were demonstrated in collaboration with KVKs and FASCs at farmers' field over an area of 162, 177, 179, 24 and 2 hectares during 2017, 2018, 2019, 2020 and 2021, respectively.
 - The reduction in maize stem borer incidence was 53.2 to 57.4 per cent in biocontrol fields as compared to untreated control. The higher yields in biocontrol fields as compared to untreated control resulted in additional benefit of Rs. 6160/- to 7218/- per ha in the biocontrol package during different years.

e) Technologies developed and adopted (included in University POP):

- Bioagent (*Trichogramma chilonis*)/ two releases (10 & 17 days old crop) @ 1,25,000/ha for management of stem borer in fodder maize (included in University POP)
- Integrated management of stalk borer, *Chilo auricilius* with pheromone traps and *Trichogramma chilonis* in sugarcane (included in University POP)
- Integrated management of early shoot borer, *Chilo infuscatellus* with pheromone traps and *Trichogramma chilonis* in sugarcane (included in University POP)
- Integrated management of top borer, *Scirpophaga excerptalis* with pheromone traps and *Trichogramma chilonis* in sugarcane (included in University POP)
- Biopesticide, *Bacillus thuringiensis kurstaki* 0.5 WP (DOR Bt-1) @ 800 g/acre for management of gram caterpillar on gram (included in University POP)
- Biopesticide, Helicop 2 % AS (HaNPV) @ 200 ml/ acre for the management of gram caterpillar, *Helicoverpa armigera* in gram (included in University POP)
- Neem based biopesticide, Ecotin (azadirachtin 50000 ppm) @ 80 ml/acre for the management of leafhopper in okra (included in University POP)

- Neem based biopesticide, Achook (azadirachtin 1500 ppm) @ 1000 ml/acre in *Basmati* rice under organic and normal cultivation conditions for the management of stem borers and leaf folder (included in University POP)
- Neem based biopesticide, Ecotin (azadirachtin 50000 ppm) @ 80 ml/ acre for the management of stem borers and leaffolder in rice/*basmati* rice under conventional and organic conditions (included in University POP)
- Biointensive management of fall armyworm using *Trichogramma* releases, NBAIR Bt 25 @ 2 % and Ma 35 @ 0.5 % in maize (recommended under AICRP)

SKUAST, Srinagar

Brief achievements:

Surveys, monitoring and Biodiversity of fauna

- A total of twenty-five natural enemies including parasitoids and predators were collected from fruit orchards in different districts of Kashmir and Laddakh during 2017-18. Majority of natural enemies were collected on apple. Among these, *Coccinella undecimpunctata, Prisci brumus uropygialis, Chilocorus infernalis, C. septempunctata, Scymnus* sp. *Chrysoperla zastrowi sillemi* dominated on apple associated with different pests. Among aphelinid parasitoids *Encarsia perniciosi* and *Aphytis proclia* together exhibited 16.0 to 20.0 per cent parasitism in unmanaged orchards against San Jose scale *Aphelinus mali* was found a promising parasitoid of Woolly apple aphid, *Eriosoma lanigerum* displaying a maximum of over 75.0% parasitism. *C. undecimpunctata, Coccinella undecimpunctata* and *Chrysoperla zastrowi sillemi* were recorded first time on Pear psylla on pear in university campus, Shalimar.
- Many coccinellid species were found associated with a number of insect pests of fruits. Parasitism of Woolly aphid, *Eriosoma lanigerum* ranged 18.0- 60.0 per cent in apple orchards. Aphelinid parasitoids were observed associated with San Jose scale, *Quadraspidiotus perniciosus* in unmanaged orchards with 29.0 per cent parasitism.
- A total of nine natural enemies including two parasitoids and seven predator species were recorded on insect pests of fruit ecosystem in Kashmir and Ladakh. Per cent parasitism by *Aphelinus mali* ranged 20- 80.0 per cent in woolly apple aphid, in different parts of Kashmir. *Chilocorus infernalis* was found actively associated with San Jose scale on apple and *Parthenolecanium corni* on plum. *Psyllaephagus* sp. was recorded first time parasitizing *P. lecanii* in Kashmir. An average of 60.0 per cent parasitism was recorded by two hymenopterous parasitoids viz. *Psyllaephagus* sp. and *Metaphycus* sp.
- Total larval parasitism by *Cotesia glomerata*, unidentified ichneumonid and tachinid flies was 34.34 % in *Pieris brassicae* whereas in diamondback, moth, *Plutella xylostella* total parasitism by *Diadegma semiclausum* and *Cotesia vestalis* was 45.75 per cent. Cabbage aphid, *Brevicoryne brassicae* recorded 22.06 per cent parasitism by *Diaeretiella rapae* and 7.56 per cent hyper parasitism by *Pachyneuron aphidis*. Lepidopteran complex was found associated with maize in different parts of Kashmir with total of 48.83 per cent parasitism by *Cotesia flavipes* and unidentified tachinid in

Chilo partellus, ecto parasitism by Euplectrus coimbatorensis in Helicoverpa armigera and Cotesia sp. on Mythimna sp.

• A total of five coccinellid predators including *Adalia tetras polita*, *Calvia punctata*, *Chilocorus* sp., *Harmonia eucharis*, and *Oenopia conglobata* were found to be associated with different insect pests of apple, pear, nectarine and walnut. Association of *Calvia punctata*, *Oenopia conglobata* and *Chilocorus* sp. with pear psylla, *Cacopsylla pyricola* was recorded first time from Kashmir. Three variants of *Harmonia eucharis* were recorded on San Jose scale and green apple aphid on apple, and pear psylla on pear.

b) Biological Suppression

- An all-inclusive approach for codling moth caused 52.34 per cent reduction in fruit damage over control as compared to 22.8 per cent as in Farmer's practice. *Heterorhabditis pakistanensis* provided good result when used against overwintering larvae. Two releases of *B. pallescens* @200 bugs/plant caused 51.0 per cent reduction in population of two spotted spider mites *Tetranychus urticae* over control. Similar dose however caused only 23.8 per cent reduction in population of European red mite, *Panonychus ulmi* on apple. Per cent mortality caused to 4th larval instar of *Pieris brassicae* on cabbage was highest by *Heterorhabditis pakistanensis* (53.75) followed by *H. indica* (42.5) and *S. carpocapsae* (17.5).
- Average density of aphids / terminal shoot after three weekly treatments during June' 2021, was found considerably low (5.13) in case of Neem oil (Azadirachtin 10000 ppm @ 2.0 ml⁻¹) and was found statistically different from other bio pesticides used. All the treatments however were found statistically significant (F= 230.36**; D.F. (5, 24); p= ≤ 0.001) and superior over untreated control. Per cent reduction in aphid density over pretreatment was found identical in all the bio pesticides except Neem oil (Azadirachtin 10000 ppm), but all the treatments indicated statistically significant difference in % reduction over untreated control (F= 114.66**; D.F. (5, 20); p= ≤ 0.001).
- European red mite indicated their statistically identical susceptibility to Neem oil (Azadirachtin 10000 ppm) as well as NSKE (Azadirachtin 1500 ppm) + *Lecanicilium lecanii* Average population of ERM^{-leaf} by these bio pesticides was held at 3.8 and 4.46 (much below the economic threshold) respectively, which differed significantly from others. Per cent reduction in ERM population over control was found maximum (87.86) in case of Neem oil (Azadirachtin 10000 ppm) but statistically identical with NSKE (Azadirachtin 1500 ppm). All the treatments however displayed statistically significant difference in % reduction over pre treatment (F= 86.26**; D.F. (5,20); p= ≤ 0.001) as well as % reduction over control (F= 107.67**; D.F. (5,20); p= ≤ 0.001).

Organic management of wooly apple aphid, *Eriosoma lanigerum* infesting apple in traditional orchards

Among bio pesticides used against wooly apple aphid, Neem oil (Azadirachtin 10000 ppm) @ 1.0 and 2.0 ml⁻¹ proved superior in terms of restricting the WAA colony on apple twig and also controlling WAA density^{- colony}

- Three weekly sprays of Neem oil (Azadirachtin 10000 ppm) @ 2.0 ml⁻¹ reduced aphid colony^{-twig} from 14.13 (untreated check) to 1.86 and WAA density^{-colony} from 144.86 to 17.73.
- Neem oil (Azadirachtin 10000 ppm) @ 2.0 ml⁻¹ proved next best to chemical in terms of managing Wooly apple aphid.

Brief about each large-scale demonstration trials:

Codling moth management

- Release of *T. cacoeciae* @ 2.5 lakh/ha. (4 releases/ season) + Trunk banding + Pheromone trapping + disposal of infested fruits + spray of *Heterorhabditis pakistanensis*. An all-inclusive approach for the management of Codling moth, *Cydia pomonella* was found best in terms of reduction in pest in Kargil
- Heterorhabditis pakistanensis exhibited maximum larval mortality, both of *P. brassicae* (60.8) and *Plutella xylostella* (64.0) as compared to *H. indica* (42.4 and 53.6) and *S. carpocapsae* (24.8 and 36.8). Per cent larval mortality of *Pieris brassicae* by *H. pakistanensis* after 72 hrs. (49.6) was statistically different from *H. indica* (33.6) Total mortality caused by Chlorpyriphos 20 EC @ 1.0 ml/lit. of water (T4) however was 88.8 per cent as compared to 10.4 per cent in untreated control (T5). *H. pakistanensis* was found superior over *H. indica* and *S. carpocapsae* in terms of larval mortality of *Plutella xylostella*. Active Juvenile stage (IJS/ plant) after 24 hrs. on kale was found maximum in case of *H. pakistanensis* (7900.00) followed by *H. indica* (5100.00) and *S. carpocapsae* (3800.00).

Technologies developed and adopted during the review period:

- Mass production of Corcyra cephalonica
- Mass production of *Trichogramma* spp.
- Mass production of entomopathogens
- Trunk banding for trapping larvae of Codling moth, *Cydia pomonella* in Ladakh
- SS production technique of *Blaptostethus pallescens*
- Integrated pest management of codling moth, *Cydia pmonella* infesting apple in Ladakh

GBPUAT

Brief achievements

- Field evaluation of promising *Trichodermal Pseudomonas* isolates for crop health management: Rice: Of all the isolates, PBAT-3, Psf-2 and Th-14 were comparatively better than other bioagents in reducing diseases and in increasing yield. Chickpea: Of all the isolates BARC-Th (11.1%), followed by PBAT-3 (15.5.0%), Th-14 (16.4%) were better in reducing plant mortality and mature plant wilt and in increasing plant growth.
- Isolation and evaluation of temperature tolerant *Trichoderma* isolates for crop health management during coldest/hottest climate: The extensive collection of samples led to the generation of 20 isolates of *Trichoderma*, coded as Ta-1 to Ta-20. A temperature of 30°C was significantly best for the growth of all the isolates of

Trichoderma. Isolate Ta 18 recorded maximum colony diameter at 10°C and isolate Ta15 showed maximum colony diameter at 40°C.

- Evaluation of bio-agent consortium in field for crop health management in chickpea: Mixed formulation (Th 14+Psf173) shown better performance over individual isolates with respect to its effect on seed germination and plant growth.
- Plant stand and plant growth under field: Minimum Number of mature plant wilt (3.7) at 120 DAS was observed with consortium Th17+Psf 173 (3.0), while maximum in control (5.7) after 120 days of sowing.
- Field evaluation of promising *Trichoderma/ Pseudomonas* isolates for crop health management: Rice: Of all the isolates, Psf-173, PBAT-3, Th14, TCMS 36 and NBAIR-2 were comparatively better than other bioagents in reducing diseases and in increasing yield. Chickpea: Of all the isolatesPBAT-3, BARC-Th and NBAIR1-Th were better in reducing plant wilt and in increasing plant growth.
- Effect of delivery methods (foliar sprays) of PBAT-3 for crop health management in Rice: Of all the delivery methods, PBAT-3 + Molasses + Cow urine + Vermiwash followed by PBAT-3 + Molasses + Cow urine + Vermiwash were better in reducing diseases and in increasing yield.
- Evaluation of fungal and bacterial isolates for crop health management in rice: Efficacy consortium under glass house condition: Mixed formulations PBAT-3, Th17+Psf-173, Th14+Psf-2, Th17+Psf2 and Th17+Th14 shown better performance over individual isolates with respect to its effect on seed germination and plant growth.
- Efficacy of consortium against diseases in field: Minimum Sheath blight (*Rhizoctonia solani*) disease severity was recorded with PBAT-3. Minimum percentage of Brown spot (*Drechslera oryzae*) infected panicle/hill was observed with Carbendazim which did not differ significantly with PBAT-3.
- Efficacy of consortium for plant vigour and yield in field: Mixed formulations Th17+Psf-173, PBAT-3, Th14+Psf-2, Th17+Psf2 and Th17+Th14 shown better performance over individual isolates with respect to its effect on plant vigour and yield.
- Plant mortality and mature plant wilt in field: Maximum percentage of seed germination and plant stand was observed with PBAT-3. Minimum Number of mature plant wilt (3.24) at 120 DAS was observed with consortium Th17+Psf 173, while maximum in control (6.10).
- Effect of BIPM practices on the incidence of major diseases in rice: In BIPM practices, Sheath blight disease reduction was found to be 53.28% while in farmer's practice it was 50.46%. In BIPM practices, Brown spot disease reduction was found to be 47.33% while in farmer's practice it was 24.26%.
- Effect of BIPM practices on the incidence of major insect pests in rice: The incidence of leaf folder, stem borer and BPH in BIPM practices was 6.31%, 7.94% and 1.39/m² which were significantly lower as compared in farmer's practice 9.08%, 9.12% and 1.70/m².

- Effect of BIPM practices on the incidence of natural enemies in rice Natural enemy population of spiders and coccinellids were substantially higher in BIPM practices as compared in farmer's practice. The percentage of eggs parasitized 59.55% by egg parasitoids on yellow stem borer was also found to be substantially higher in BIPM practices, than in farmer's practice 11.93%.
- Effect of BIPM practices on seed germination and incidence of wilt disease in Chickpea: Maximum seed germination with 82.66% was observed in BIPM practices as compared to farmer's practice, 73.33% and incidence of wilt disease in BIPM practice (24.67%) did not differ significantly with farmer's practice (28.06%). The maximum grain yield of chickpea was recorded from the BIPM practice (14.48q/ha) followed by farmer's practice (11.50 q/ha). Net return of chickpea in BIPM practice was Rs 70414.86/ ha and farmer's practice was Rs 51466.84/ ha with C:B ratio1:5.4 and 1:1.2 respectively.
- Effect of BIPM practices on the incidence of major insect pests in chickpea: Incidence of *Helicoverpa armigera* was significantly lower in BIPM practice (1.9 eggs/m2) as compared to farmer's practice (2.2 eggs/m2). In BIPM practices, the percent pod damage owing to pod borer differed significantly (26.7%) from farmer's practice (30.3%). In comparison to the farmer's practice, the results showed that the strategies used in the BIPM practice, such as border crops, flowering plants in combination with the spray of HaNPV (NBAIR strain), pheromone traps, and the use of botanicals, played a significant role in increasing the natural enemies population.
- Large scale field demonstration of bio-control technologies: Rice: Large scale • field demonstrations of Pant Biocontrol agent (PBAT)-3 in rice 1544 nos., area 837ha; chickpea 310 nos., area 115 ha; lentil 230 nos., area 124 ha; Pea 140 nos., area 60 ha and Tomato 148 nos., area 59 ha and supplied 59 Q Pant Biocontrol agent (PBAT)-3 to the farmers. In rice an average yield of 68.0 q/ha was recorded by the farmers adopting bio-control technologies along with need based organic practices as compared to an yield of 52.0 q/ha by the farmers adopting conventional practices for the management of insect pests and diseases. The cost benefit ratio was in Biocontrol Practices 1: 2.40 in comparison to Conventional practices 1: 1.26. In Pea an average yield of 90.0 q/ha was recorded by the farmers adopting bio-control technologies along with need based organic practices as compared to an yield of 71.0 g/ha by the farmers adopting conventional practices for the management of insect pests and diseases. The cost benefit ratio was in Biocontrol Practices 1: 1.66 in comparison to Conventional practices 1: 1.44. Through the adoption of biocontrol technologies farmers were able to reduce their cost of production substantially and minimized losses due to pests and diseases resulting in increased cost-benefit ratio and a healthy crop.

IIRR (millets)

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna:

Management of Pink borer in Ragi with entomofungal pathogens:

- For the management of Pink borer (*Sesamia inferens*) in Finger millet, spray application of *Metarhizium anisopliae* ICAR-NBAIR (Ma 35) oil based formulation @ 10 ml/lit at 20 & 40 DAE of crop) and application of ICAR-NBAIR (Bb-45) oil based formulation @ 10 ml/lit at 20 & 40 DAE) were the best and were on par with soil application of Carbofuran 3G @ 20kg /ha twice at 20 and 40 DAE.
- Highest incremental yield (6.77 q/ha) over control was realized in application of carbofuran 3G granules @ 20 kg/ha which was on par with 5.62 q/ha yield gain realized in spray application of Ma 35 @10 ml /lit implying that there was 46.7% increase in grain yield over the control and 9.56% decrease in grain yield over the insecticide control.

Management of Fall army worm in sorghum with bioagents:

- Release of *Trichogramma chilonis* @ one card/acre twice at weekly intervals commencing at 7 DAE, 14 DAE of sorghum followed by spray of *Metarhizium anisopliae* (Ma 35) @ 0.5 % at 20, 35 DAE was found to decrease the egg patches, larvae numbers (42.0 %) and whorl damage (59.9%) caused by *Spodoptera frugiperda*, significantly.
- There was 11.1 and 15.4 % increase in the grain and fodder yield in comparison to control.

IIHR

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

Extensive surveys in the farmers' fields, (Kandali village, Hassan district, Karnataka; 76.03° E 12.97°N; cv. PKM-1, n = 500) and at the experimental fields of ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka (12°58' N; 77°35' E; cv. PKM-1, n = 140) revealed severe damage by the tea mosquito bug on drumstick plants. Tea mosquito bug *Helopeltis antonii*, was observed to cause severe damage (74-100%) to drumstick, *Moringa oleifera* Lam.The feeding damage by adult as well as nymphal stages of *H. antonii* led to wilting of shoots and the typical damage symptoms on drumstick included the necrotic/silvery patches on the tender shoots/ fruits, leaf loss and dieback of tender shoots that led to complete drying of plants.

c) Evaluation and bio efficacy of Biopesticides:

The mean number of ash weevils per brinjal plant were significantly lower in treatments *Heterorhabditis indica* @ $2.5 \ 10^9$ IJs ha⁻¹ and *M. anisopliae* (NBAIR strain) followed by *B. bassiana* (NBAIR strain) and *B. bassiana* AAU strains. They were significantly different form the control check, but not superior over chemical control. Similarly, the leaf damage scoring by ash weevil in different treatments were recorded. The *B. bassiana* (NBAIR strain) and *M. anispoliae* AAU strains were showing significantly lower leaf damage scoring compared to other treatments.

IIRR

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

• Survey and monitoring of natural enemy biodiversity in rice was taken across the country. 40 species of odonata have been recorded from rice fields. Similarly, 40 species of spiders from 14 families have also been recorded from rice fields during various stages of crop growth. *Telenomus* sp from egg masses of stem borers have been collected from 13 locations.

b) Biological Suppression

- Biocontrol potential of temperture tolerant strains of *Trichogramma* developed at NBAIR have been evaluated. Studies on parasitic efficiency of both the strains of *Trichogramma japonicum* against three lepidopteran pests exhibited an order of preference *i.e.*, *Sesamia inferens* > *Scirpophaga incertulas* > *Chilo polychrysus* by thermo-tolerant *T. japonicum*. Highest female progeny emergence of 68.13±8.14 per cent was recorded from parasitized eggs of thermo-tolerant *T. japonicum* on *S. incertulas* than 32.22±11.38 per cent by normal *T. japonicum* on the same host.
- Similarly, the *Amphiareus constrictus* (Stal.)an anthocorid predatorwas evaluated for management of rice hoppers.Under no choice test, percentage prey offered was in order BPH eggs (48.00%) >WBPH eggs (40.00%) >GLH eggs (20.00%). Mini cage experiments with varying densities of predator and prey also indicated a suitability of this predator for reducing numbers of early intars of Brown planthopper.
- Bioagents *Trichoderma asperellum Strain* TAIK1, *Bacillus cabrialesii* BIK3 and *Pseudomonas fluorescens* Strain PIK1 isolated from rice soils were found to reduce diseases such as blast and false smut significantly.

c) Evaluation and bio efficacy of Biopesticides:

• Evaluation of entomopathogenic fungi isolated from KAU and NBAIR was taken up against ear head bug *Leptocorisa* spp was taken up in two locations for two years. *L* saksanae spray was on par (9.50/ 10 hills) with insecticide treatment at Navsari, Gujarat.

Brief about each large scale demonstration trials:

- Bio intensive pest management demonstrations were taken up at two locations Telangana and Odisha in 2018 and 19 and in Telangana state in 2020 and 2021 for four years
- Indigenous bioagents from rice ecosystem such as *Trichoderma asperellum* Strain TAIK1, *Bacillus cabrialesii* BIK3 and *Pseudomonas fluorescens* Strain PIK1based BIPM packages along with interventions such as bund cropping, application of Phosphorous Solubilising Bacteria, alleyways, organic manuring, owl perches for rodent management were found to reduce insecticide use and manage pests were demonstrated in BIPM trials with a benefit cost of 1.95 2.59 as compared to 1.77-2.46 in farmers' practices of chemical dependence.
- The brown plant hoppers was lowest in the BIPM plots (25/ 10 hills) with a single application of insecticide while in farmers practice the numbers increased to 150/ 10

hills in spite of spraying four times. This was mainly due to timing of application and sole dependence of insecticides for insect management.

• Field days were conducted at Kalahandi and Koraput Odisha and at Ibrahimpatnam and Nalgonda districts of Telangana

Technologies developed and adopted during the review period:

- Adopted BIPM modules with various interventions
- Tested efficient entomopathogens developed through AICRP Biocontrol in the rice AICRIP system

IIVR

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

Extensive surveys were conducted in and around Varanasi to identify the occurrence of American pin worm, *Tuta absoluta* on tomato. Occurrence of pin worm on leaf and fruit were first recorded during last week of February (9 SMW) and maximum *T. absoluta* adults catch was recorded during 13 SMW (23.33 aduts /trap). During the survey, one polyphagous predator *viz.*, *Nesidiocoris tenuis* (Miridae: Hemiptera) was observed in tomato. Maximum 5.7 bugs/apical twigs were recorded. Critical observation revealed that apart from early instars larvae, it also feed up on soft-bodied insects like whiteflies and jassids infesting tomato.

b) Biological Suppression :

Bio-intensive pest management of *Helicoverpa armigera*, *Tuta absoluta* and sucking pests of tomato

Bio-intensive pest management module (BIPM) comprising seed treatment with Trichoderma harzianum @ 10g/kg of seeds; raising marigold as trap crop; use of NBAIR pheromone traps @ 1 trap per plot; inoculative six-release of Trichogramma pretiosum @ 50,000 / release and spraying of Azadirachtin 1500 ppm @ 2 ml/lit; and Lecanicillium lecanii (NBAIR starin) 1×10^8 spores/ g @ 5g/lit for sucking pests was compared with chemical control (Chlorantraniliprole18.5% SC for Tuta and Indoxacarb 14.5 SC for other pests at their recommended doses) and untreated control against insect pests complex of tomato. The lowest whitefly (0.31), aphid (0.20), jassid (0.28) and leaf miner (0.90) populations per leaf were recorded in the BIPM module followed by chemical module with 0.51, 0.46, 1.30 and 1.41 pest population per leaf, respectively. In contrast, untreated control plots harboured maximum whitefly (1.47), aphid (1.22), jassid (2.52) and leaf miner (1.59) population per leaf. However, lowest fruit damage by its borer complex was recorded in chemical control module (1.51%) followed by BIPM module (4.19%) where maximum fruit damage (15.52%) was recorded in untreated control. Similarly, occurrence of predatory mirid bug (Nesidiocoris tenius) was recorded maximum in untreated control plots (2.65 bugs/leaf) followed by BIPM module (2.21) treated plots and lowest predator population (0.39) was in plots treated with chemical insecticides.

c) Evaluation and bio efficacy of Biopesticides:

Field evaluation of ICAR-NBAIR entomopathogenic strains against cabbage aphid (*Myzus persicae*) and *Plutella xylostella* (DBM)

Effect of different biopesticides on major insect pests of cabbage was studied during the rabi season of 2018-21 at the experimental farm of ICAR-IIVR, Varanasi. It is evident that among the biopesticides tested, *Metarhizium anisopliae* (Ma-4 strain) was most promising with 48.95 per cent reduction over control (PROC) against diamond back moth (*Plutella xylostella*) followed by *Lecanicillium lecanii* (VI-8 strain). In case of aphid (*Myzus persicae*), maximum reduction (42.56 PROC) was recorded with *Lecanicillium lecanii* (VI-8 strain). However, amongst the all treatments, the chemical insecticide Indoxacarb 14.5 SC at its recommended dose @ 0.75 ml/lit was superior both in reducing DBM and Aphids in cabbage. In case of two polyphagous predators *viz.*, spider and lady bird beetle (*Menochilus sexmaculatus*) populations were lowest in Indoxacarb treated plots (0.11 and 0.29 per plant, respectively), and were relatively higher in untreated control and entomopathogens treated plots.

KAU, Vellayani

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

• Field visits conducted during the period 2018-22 reported the occurrence of the Rugose spiralling whitefly, cassava mealybug, fall armyworm in maize (less occurrence). Coffee locust *Aularches miliaris*, oriental fruitfly, melon fruitfly, coconut eriophyid mite, pseudostem weevil, redpalm weevil, rhinoceros beetle, mango hoppers in the southern districts of Kerala

b) Biological Suppression

• The invasive pest RSW is being supressed naturally by *Encarsia guadelopeae*, parasitisation ranging from 55 to 75 % during the summer and winter season of the year, with a negligible population during monsoon season.

c) Evaluation and bio efficacy of Biopesticides:

- Experiments on management using biocontrol agents proved the efficacy of water jet, NBAIR starin of *Isaria fumosorosea* and Neem oil emulsion with sticker
- Experiments on of oil/talc formulations of *Lecanicillium saksenae* proved its efficacy in managing rice bug, pod bugs in pulses.
- NBAIR Ma 4 was more effective to rice bug than NBAIR Bb 5 Capsule formulation of NBAIR Bb 5 and KAU Bb 6063 wee effective for leaf webbers in amaranthus.
- BIPM in rice comprising seed priming with NBAIR Bb 5 + foliar spray at vegetative phase + Trichocards from 30 DAP + foliar spray of *L. saksenae* during panicle initiation and milkystage was effective against rice bugs.
- BIPM in rice comprising seed priming with NBAIR Bb 5 + foliar spray at vegetative phase + Trichocards from 30 DAP + foliar spray of *L. saksenae* during panicle initiation and milkystage was effective against rice bugs.

Technologies developed and adopted during the review period:

- Chitin enriched oil formulation of *L.saksenae*
- Capsule formulations of entomppatogenic fungi

KAU, Kumarakom

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna:

- Survey conducted in polyhouses of Kottayam district revealed the incidence of serpentine leaf miner, *Liriyomyza trifolii* and Tetranychid mite *Tetranychus truncates* Ehara.
- Survey on infestation by rugose spiraling whitefly revealed 53 to 73 percent infestation at Kumarakom (Kottayam district), 37 to 51 percent at Moncompu (Alapuzha district) and 44 to 57 per cent at Vyttila (Ernakulam district). Parasitism by *Encarsia guadalopae* was observed in all the places surveyed.
- Survey on infestation by Bondar's Nesting whitefly revealed 45-80 per cent infestation at Kumarakom (Kottayam district), 42-67 per cent infestation at Moncompu (Alappuzha district) and 39-77 per cent infestation at Vyttila (Ernakulam district). Parasitism by *Encarsia guadeloupae* on nesting whitefly was not noticed in any of the places surveyed.

b) Biological suppression

The fungal isolate *Hanseniaspora uvarum* (Y-73), *Trichoderma harzianum* (Th-3), *T. viride* (KAU strain) and *Pseudomonas fluorescens* (KAU strain) applied as seed treatment followed by foliar spray provided effective control of anthracnose disease of vegetable cowpea. Foliar spray with VI-8 isolate of *Lecanicillium lecanii* was found to be the best in reducing chilli mite. *Isaria fumosorosea* Pfu-5 followed by neem oil spray could bring about reduction in live colonies and nymphs of Bondar's nesting whitefly.

CAU, Pasighat

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna: Collected various pests and natural enemies like parasitoid, coccinellids and spiders from different agro-ecological zones during surveys from remote places for the first time (Nafra-West Kameng, Mechukha-ShiYomi, Riga-Siang). Reported Rugose Spiralling Whitefly on Coconut from Arunachal Pradesh region during 2020. Recorded the leaf and fruit scarring beetles on banana crop. Reported paddy white backed plant hopper outbreak during 2020-21. First record of *Anisopteromalus calandrae* (Howard) from Arunachal Pradesh (NEH)-a parasitoid on Bruchids in Green gram.

b) Biological Suppression:

• Demonstrated BIPM techniques for biological suppression of insect pests in Cabbage, Tomato, Mustard and Maize covering 05 farmers for each crop

c) Evaluation and bio efficacy of Bio-pesticides:

- Among the different bio-pesticides evaluated, VI-8 isolate (NBAIR isolate) of *Lecanicillium lecanii* was found promising in getting higher cabbage yield (22.19 t/ha) due to lower pest incidence (2.96 aphids/plant and 2.15 DBM larvae/plant) in Cabbage.
- Among different biocontrol agents tested, significantly lowest number of *Spodoptera frugiperda* was recorded in the treatment *Trichogramma chilonis* @ 1 card/acre + NBAIR Bt @ 2% in Maize (1.85 larvae/10 plants and 15.19 % plant damage).

Brief about each large scale demonstration trials:

1. BIPM in Tomato: Used ICAR-NBAIR and IIHR, Bengaluru based BIPM technology for demonstration in farmer fields during 2020-21 and 2021-22. In each year demonstration was carried out in 01 ha area covering 05 farmers from Jampani and Tulap, East Siang. The BIPM module recorded the significantly lowest pest population of *H. armigera* (1.54 larvae/plant) and sucking pests (whiteflies and leaf hoppers) (7.70/plant) than chemical module. It has documented the higher yield (22.80 t/ha) as compared to chemical module (20.43 q/ha).

2. BIPM in Cabbage: Used ICAR-NBAIR Bengaluru and ICAR-IIVR, Varanasi based BIPM technology for demonstration in farmer fields during 2020-21 and 2021-22. In each year demonstration was carried out in 02 ha area covering 05 farmers from Jampani and Tulap, East Siang. Although, the chemical module documented the lowest population of DBM (3.24 larvae/plant) and aphid (24.46/ plant), it was found statistically at par with the pest population recorded in BIPM module (DBM – 3.24/plant, aphid – 19.92/ plant). With regard to the population of natural enemies, BIPM module documented with highest coccinellids and syrphids (3.91/ plant) which were significantly higher than the population observed in chemical module (0.92/plant).

3. BIPM in Mustard: Used ICAR-NBAIR Bengaluru based BIPM technology for demonstration in farmer fields of Yagrung village (05 farmers 01 ha each) during 2020-21 and Taki Lalung village (05 farmers 01 ha each) during 2021-22. The farmers' module documented the highest population of aphid (41.92/plant), compared to BIPM module (25.12 aphids/plant). Although, the farmers practice recorded the higher number of natural enemies (coccinellid beetles and syrphid flies) i.e. 5.47 per plant, it was found statistically at par with those recorded in BIPM module (4.11/plant). Due to higher pest incidence in farmers practice and no externally added agro-inputs, it was recorded with the lowest yield (6.44 q/ha) significantly lower than that of BIPM module (9.36 q/ha).

4. BIPM in Maize: Field demonstrations were carried out to create awareness and management of invasive pest Fall armyworm on Maize.Used ICAR-NBAIR Bengaluru based BIPM technology for demonstration in farmer fields of Berung village (05 farmers 01 ha each) during 2020-21 and Tulap and Jampani village (05 farmers 01 ha each) during 2021-22. Though chemical module recorded the significantly lower FAW population (1.41 larvae/plant) and plant damage (7.41 %) than BIPM module (1.64 FAW larvae/plant and 9.04% plant damage). The BIPM module (3.40/plant) documented the significantly higher natural enemies (coccinellids, lacewing flies and spiders) than chemical module (0.98/plant). In spite of higher FAW incidence, the BIPM module recorded the grain yield of 36.15 q per ha which was statistically at par with farmers practice (35.45 q/ha).

Technologies developed and adopted during the review period:

- BIPM technologies in Cabbage, Tomato, Maize, and Paddy adopted from ICAR-NBAIR, Bengaluru
- Talc based microbial pesticides are in progress using native isolates of *Beauveria* bassiana and *Metarhizium rileyi*

MPKV

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna :

1. Survey and collection of natural enemies- *Trichogramma*, *Chrysoperla*, *Cryptolaemus*, spiders, entomopathogens.

- The natural enemies inclusive of coccinellids, *Dipha aphidivora* Meyrick, *Micromus igorotus* Bank. and syrphids *Eupoderes confractor* and parasitoid, *Encarsia flavoscuttellum* on Woolly aphids in sugarcane, *Coccinella transversalis* F., *M. sexmaculata, Brumoides suturalis* (F.), *Scymnus coccivora* Ayyar, *Triomata coccidivora* and *B. suturalis*in mealybug colonies on custard apple, *Acerophagus papaya* N& S, *Mallada boninensis* Okam. and *Spalgisepius* on papaya mealybugs were recorded. However, the Chrysopid, *Chrysoperla zastrowi sillemi* Esben. were observed in aphid colonies on cotton, maize, bean, jawar, okra and brinjal crops.
- The entomopathogens, *Metarhizium rileyi* (Farlow) (*N. rileyi*) diseased cadavers of *S. litura* were collected and isolated from soybean and cabbage crops, while diseased cadavers of *Spodoptera frugiperda* (Smith) infected with *Metarhizium rileyi* (Farlow) (*N. rileyi*) were collected from Maize fields. The cadavers of NPV infected larvae of *S. frugiperda* were also collected from maize. *H. armigera* larvae, mango hoppers and white grubs infected with *M. anisopliae* were collected and isolated from pigeon pea crops.

Surveillance for pest outbreak and alien invasive pests (CPOR)

- Amongst the targeted invasive pests, the mealybug species *Pseudococcus jackbeardsleyi* and *Paracoccus marginatus* were recorded on custard apple and papaya respectively, in Pune region. *Tut aabsoluta* was recorded in Junnar Tahasils of Pune district during April to May 2017 on tomato crop.
- The Fall armyworm (FAW), *Spodoptera frugiperda* (Smith) was recorded for first time in Kolhapur district on maize crop in July, 2018. The pest extended its host range on sorghum in Satara, Pune, Solapur, Jalgaon districts and also recorded in fields of sugarcane in PalusTahasil of Sangli district and KagalTahasil of Kolhapur district, respectively. FAW is reported for the first time on Cotton crop at Susare Village of Pathardi Tahasil in Ahmednagar district during 2019-20.
- The new alien pest, rugose spiralling whitefly was observed first time on coconut palms in Western Maharashtra during the year 2021-22. Parasitoid, *Encarsia* sp. and predator, *Apertochrysa* Sp. sere seen in the colonies of rugose spiralling whitefly (*Aleurodicus rugioperculatus*) on coconut in Pune, Ahmednagar and Satara districts. *Encarsia*sp. and a predator, *Chrysoperla* sp. were also seen in the colonies of rugose spiralling whitefly on guava.

b) Biological Suppression of Crop Pests.

Chickpea: Biological suppression of pod borer, *Helicoverpa armigera* infesting chickpea on farm

• In efficacy studies of bioagent, *Bacillus thuriengiensis* @ 1 Kg/ha (2g/L of water) effectively suppressed the gram pod borer infestation in chickpea and recorded the

larval population of 0.68 larvae / Sq. m., pod damage of 5.33 % and grain yield of 15.97 q/ha with B: C ratio 2.20 as against in chemical check spinosad 45 SC @ 150 ml/ha (0.3 ml/L of water) with 0.37 larvae / Sq. m., pod damage of 4.27 % and grain yield of 16.28 q/ha with B: C ratio 2.27. Bt was at par in reducing larval population of *H. armigera* with 4.88% pod damage and recorded grain yield of 16.03 q/ha as against in standard insecticidal check of spinosad 40 SC @ 150 ml/ha with larval population of 0.34 larvae/m. 3.55% pot damage and grain yield of 17.83 q/ha (2021-22).

Pigeon pea: Evaluation of NBAIR *Bt* formulation on pigeon pea against pod borer complex (Pooled results of 2017-18 to 2018-19)

• The pooled data indicated that three sprays of chlorantraniliprole 18.5% SC at fortnightly interval was significantly superior over other treatments in suppressing the larval population of *Maruca testulalis* (av. 4.66 larvae/plant), *Exelastis atomosa* (av. 1.62 larvae/plant) and *H. armigera* (av. 1.11 larvae/plant) and recorded minimum pod (7.22 %) and grain (5.44%) damage with maximum yield (16.76 q/ha) and BC ratio 1:1.21. However, it was at par with NBAII-*Bt* G4 @ 2% in respect of *M. testulalis* (av. 5.46 larvae/plant), *E. atomosa* (av. 2.01 larvae/plant) and *H. armigera* with average 1.65 larvae/plant, pod damage (8.89%), grain damage (6.17%) and yield (15.52 q/ha) on pigeon pea with BC ratio 1:1.12.

Cowpea: Field evaluation of ICAR-NBAIR entomopathogenic strains against cowpea aphids (*Aphis craccivora*) (2021-22)

Two sprays of ICAR-NBAIR entomopathogenic strains and insecticides against cowpea aphids showed that the treatment with Imidacloprid 17.8 SL has significantly controlled the population of cowpea aphids (118.80 mean aphid population/3 leaves) over rest of the treatments. The treatment VI-8 isolate of *Lecanicillium lecanii* @ 1×10⁸cfu/ml @ 5.00 gm/liter was next best with 29.84 aphids/3 leaves. The significant highest yield was recorded from the treatment Imidacloprid 17.8 SL @ 0.40 ml/litre of water (13.76 qt/ha) which was followed by 12.58 qt/ha in the treatment VI-8 isolate of *Lecanicillium lecanii* @ 1×10⁸cfu/ml @ 5.00 gm per litre of water.

Cotton: Evaluation of entomofungal agents and botanicals for the management of sucking pests in cotton

• Pooled means for two years (2017-18 and 2018-19) indicated that amongst the biopesticides, *Lecanicillum lecanii* (1 x 10⁸conidia/g) @ 5 g/litre recorded lowest population of sucking pests *viz.*, aphids (5.74), jassids (2.69), thrips (2.61), and white flies (1.77) on 3 leaves per plant. The *Lecanicillum lecanii* (1 x 10⁸ conidia/g) @ 5 g/litre recorded seed cotton yield of 18.32 q/ha which was at par with dimethoate 0.05 per cent (19.02 q/ha) with B:C ratio (1.25) and 1.32, respectively.

Tomato: Bio-intensive management of *Helicoverpaarmigera*, *Tuta absoluta* and sucking pests on tomato

• BIPM treatment, fruit on number basis (15.75%) and on weight basis (14.05%) was at par with chemical treatment (20.58%) and (17.15%), respectively. Regarding sucking pest population, the BIPM treatment recorded minimum number of thrips

(3.42 thrips/plant) and whiteflies (2.04 flies/plant). The highest marketable fruit yield (21.72 t/ha) was recorded in BIPM treated plots with B:C ratio (1.60) as against yield in chemical treatment (20.24 t/ha) with B:C ratio (1.53).

Okra: Efficacy of biocontrol agents for management of fruit borer *Earias vittella*on okra

• Three sprays of *Bacillus thuringiensis* var. *Galleriae* (*Bt*) @ 1 kg/ha starting from 45 days after sowing at 15 days interval is recommended for the effective control of shoot and fruit borer, *Earias vittella* on okra.

Cabbage: Field evaluation of ICAR-NBAIR entomopathogenic strains against cabbage aphid (*Brevicoryne brassicae*) and diamond back moth *Plutella xylostella* (L)

The two years pooled data revealed that out of biopesticides, the VI-8 isolates of *Lecanicillium leccanii* @ 5.00 g/liter of water was superior in controlling aphid population with 28.45 number of aphids/3 leaves/head followed by Bb-5a isolate of *Beauveria bassiana* @ 5.00 gm/liter of water Highest yield (149.98 q/ha) was recorded in the treatment Cynantraniliprol 10.26% OD while 129.59, 129.09 and 125.89 q/ha were recorded in VI-8 isolates of *Lecanicillium leccanii*, Bb-5a isolate of *Beauveria bassiana* and Bb-45 isolate of *Beauveria bassiana*, respectively.

Sugarcane: Field efficacy of EPN strains against white grubs in sugarcane

- The three years pooled data (2019-20, 2020-21 and 2021-22) on efficacy of different EPN strains against white grubs in sugarcane revealed that the significant difference among treatments were recorded in clump mortality due to application of EPN. The treatment Fipronil 40% + imidacloprid 40 WG @ 0.4 g/l was found significantly superior over rest of the treatment with 6.22 per cent clump mortality.
- The treatment *Heterorhabditis indica* 10 kg/ha (NBAIR WP formulation) @ 10 kg/ha was second best treatment in clump mortality due to white grub (8.03%) and was at par with the treatment *Heterorhabditis bacteriophora* @ 10 kg/ha (NBAIR WP formulation) with (9.04 %) clump mortality as aginst 19.67 %.
- Highest white grub reduction was recorded in chemical control (68.38%) followed by *H. indica* @ 10 kg/ha (59.18%), *H. bacteriophora* @ 10kg/ha, S. *carpocapsae* @ 10kg/ha and *S. abbasi* @ 10kg/ha which recorded 54.04, 49.56 and 45.55 per cent, reduction, respectively.
- Grapevine powdery mildew, Uncinula necator disease of grape was effectively managed with three spraying of Trichoderma harzianum @ 5 ml /L + Ampelomyces quisqualis @ 5 ml /L and recorded minimum 6.33 6.77 Per cent Disease Index (PDI) and maximum fruit yield 18.667- 19.567 Mt./ha followed by Bacillus subtilis @ 1 g /L + Ampelomyces quisqualis @5 ml /L which recorded 7.00- 8.23 PDI with fruit yield of 18.517 19.453 Mt./ha as against in chemical check (sulphur 2g/litre of water) recording 8.67 PDI- 10.00 PDI and fruit yield 17.467 -19.033 Mt./ha (2020-21 and 2021-22)

Brief about each large scale demonstration trials:

Large scale demonstration on biological suppression of *Spodoptera litura* with *Nomuraea rileyi* in soybean

• The large scale demonstration was conducted on the Kuran farm of College of Agriculture, Pune .The pooled result of trials conducted during 2017 and 2018 *Kharif* seasons indicated that two sprays of *Metarhizium rileyi* (Farlow) (*N. rileyi*) 2.0 x 10⁸cfu/g were significantly superior in suppressing the larval population of *S. litura* (2.46 larvae/m row) due to fungal infection with maximum soybean yield of 16.43 q/ha with BC ratio 1.62.

Large scale demonstration of Trichogramma sp against sugarcane bore

- The large scale demonstration on biological suppression of borer complex in sugarcane was carried out.
- The pooled results of three years trial conducted during 2017-18, 2018-19 and 2019-20 revealed that eight releases of *T. chilonis* TTS @ 50,000 parasitoids/ha at weekly interval starting from 40 days after emergence of shoots found significantly superior to untreated control in reducing the ESB infestation (from 22.16 to 6.41 % dead hearts) and recorded maximum cane yield (139.64 Mt/ha) with B: C ratio 1: 2.31.

Technologies developed and adopted during the review period:

- Mass production of *Metarhizium anisopliae* was carried out on PDA media and mass multiplied on talc powder was demonstrated over 20 ha on research farm of College as well as farmers' fields against white grub on sugarcane. The strain of *M. anisopliae* found infectious to white grub on sugarcane, which resulted in 52 to 60 per cent decline in pest population.
- Three sprays of *Bacillus thuringiensis* var. *Galleriae* (BTG 4) @ 20 ml per 10 lit. water **at 15 days interval** starting **from 45 days after sowing is** recommended for the control of shoot and fruit borer on okra. (Joint Agresco Meeting, MPKV, Rahuri 28-30th May, 2019) (State Level).
- Three sprays of *Sl*NPV @ 250 LE/ha (1.5 x 10¹² POBs/ha) or *Nomuraea rileyi* @ 2.5 kg/ha (1 x 10¹³ conidia) at 15 days interval starting from appearance of the pest is recommended for the control of *Spodoptera litura* in soybean.
- Demonstrated use of *Apertochrysa astur* for the control rugose spiraling white fly (*Aleurodicus rugiperculatus* Martin) in coconut orchards from College Of Agriculture, Pune and Khed, Daund and Haveli Tahashil of Pune district in western Maharashtra.

MPUAT, Udaipur

a) Survey, monitoring and biodiversity of fauna

• During *Kharif* and *Rabi*, the diversity of natural enemies of major insect pests of maize, gram and tomato crops from different villages of Southern Rajasthan were recorded. The natural enemies recoded were *Cheilomenes sexmaculata* Fab. *Coccinella septempuctata* L in, *Chrysoperla zastrowi sillemi, Brumoides suturalis* (Fabricius), Rove beetles (Staphylinidae), Predatory pentatomid bug, *Cotesia flavipes* (Cameron) and Spiders

(ii) Survey and surveillance of Fall Army Worm, *Spodoptera frugiperda* (Smith) on maize:

• Surveys were conducted to record the incidence of fall armyworm, *S. frugiperda* from June, 2018 to March, 2022. The survey indicated that the incidence of fall armyworm was noticed to be low to moderate in different districts of Southern Rajasthan with an average incidence range of 10-40 per cent.

b) Biological suppression

i) Biological Control of Maize Stem Borer, Chilo partellus using Trichogramma chilonis:

• The dead heart formation recorded in fields with the releases of *T. chilonis* was 8.50-13.50 per cent and in chemical control, it was 6.50-10.20 per cent on an average during the period from 2018-2022. The reduction in incidence over control was 44-50 per cent and 56-62 per cent, respectively for *T. chilonis* and Spinosad. The yield in *T. chilonis* (T₁) fields were 28.50-32 q/ha and 31-35 q/ha in Spinosad, which was significantly more than in untreated control.

(ii) Biological Suppression of Pod Borer, *Helicoverpa armigera* (Hubner) Infesting Chickpea.

• The maximum larval population reduction was recorded in quinalphos 25 EC @ 250g a.i/ha treatment and the minimum reduction was observed in *B. bassiana* @ 1x10⁸ conidia /gm @ 5 gm/l at 7 days interval, 2 sprays at pod initiation stage, whereas, the untreated control recorded least reduction in larval population at ten days after spray. Minimum per cent pod damage was recorded in treatment of quinalphos 25 EC @ 250g a.i/ha and maximum was in *B. bassiana* @ 1x10⁸ conidia /gm @ 5 gm/l.

d.) Technologies developed and adopted

- Release of *Trichogramma chilonis* @ 100000/ha for 3 times against Maize Stem Borer, *Chilo partellus*.
- Fungal bio-pesticides, *Beauveria bassiana* @ 1x10⁸ conidia /gm @ 5 gm/l at 7 days interval, 2 sprays at pod initiation stage significantly reduced the Pod Borer, *Helicoverpa armigera* (Hubner) infesting chickpea.
- *Bacillus thuriengiensis* @1 kg/ha significantly reduced the Pod Borer, *Helicoverpa armigera* (Hubner) infesting chickpea.

TNAU

a) Surveys, monitoring and Biodiversity of fauna :

• Surveys were conducted to assess the status of invasive pests. The occurrence of *A. rugioperculatus* was recorded in all the coconut growing areas in Tamil Nadu. The parasitization by *Encarsia guadeloupae* ranged between 10.00 and 100.00 per cent in coconut gardens. A diverse array of predators *viz.*, *Aprtochysa astur, Chilocorus nigrita, Coccinella transversalis, Malladades jardinsi, Cheilomenes sexmaculatus, Propylea dissecta, Scymnus nubilis, Scymnus saciformis, Chrysoperla zastrowi sillemi are present in the coconut gardens. In sugarcane, <i>Dipha aphidivora* and *Micromus igorotus* were observed in Coimbatore and Erode Districts. Cassava mealybug *Phenacoccus manihoti* caused 30-40 % damage in cassava fields in Erode, Namakkal and Salem Districts during May, 2020. *Hyperaspis maindroni* was found to be the predominant coccinellid predator of the mealybug. Besides *H. maindroni, Mallada* sp.

and *Prochiloneurus aegyptiacus*, *Tetrastichus* sp. were also observed. Among the parasitoid species, *Homalotylus turkmenicus* emerged from the coccinellid predator, *H. maindroni* grubs. Encyrtid parasitoid, *Copidosomyia ambiguous* (Subba Rao) Hymenoptera: Chalcidoidea: Encyrtidae) has been found on *Malladades jardinsi* (Navas) eggs.

b) Biological Suppression

Tomato

• In the BIPM field, the leaf damage caused by *Tuta absoluta* (6.70 %) was significantly lesser than in farmers practice and control plot on 60 Days After Transplanting (DAT). At 105 DAT, the fruit damage caused by *T. aboluta* (10.90 %) was significantly lesser in BIPM plots when compared to chemical treatment (13.20%) and control (18.90 %). Moreover, the fruit damage caused by *H. armigera* (11.30 %) was significantly lesser in BIPM when compared to chemical treatment (16.10 %) and control (25.30%). The fruit yield (24t/ha) was significantly higher in BIPM plot as compared to insecticide treated plot (21.5t/ha) and control plot (18.25/ha).

Brinjal

- The incidence of *Epilachna* beetle noted in brinjal with coriander as inter crop and cowpea as border crop was minimum 0.2 Nos./ plant as against the 1.57 Nos./ plant in the sole crop. The natural enemies like coccinellids was high in mixed crops (2.68 Nos./plant) as against sole crop of brinjal which showed 0.6 Nos. / plant. The nematode population (Root knot and reniform nematodes) was significantly lower in Brinjal crop intercropped with radish (192.6 nos./250 gm soil) and coriander (201.6 nos./250 gm soil) whereas cowpea (458 nos. /250 gm soil) as intercrop housed more numbers of nematodes which was on par with the control plot (491 nos. /250 gm soil).
- The fruit damage in brinjal due to *Leucinodes orbonalis* was significantly low (17.82%) in plots sprayed with pesticides followed by 21.80 per cent fruit damage in BIPM plots (Azadirachtin 1500 ppm @ 2ml/lit (one round of spray) + *Lecanicium lecanii* (one round of spray) + *Trichogramma pretiosum* (8 releases) + Pheromone traps @20/ha + Cowpea as bund crop). The cost benefit ratio realized in BIPM was 1:3.90 as against 1:4.83 in insecticides treated plots

Cabbage

• BIPM practices was significantly superior in reducing the population of diamond back moth by recording 0.46 larvae/plant after three rounds of spray while it was 1.62 and 7.66 larvae /plant in chemical treatment and control plot respectively. Inundative release of *Trichogramma* worked out effectively and parasitoids were recovered from cabbage plants A highest yield of 44.25 t/ha was recorded in BIPM plot which was on a par with chemical treatment (43.2 t/ha). Yield from control plot was 38.7 t/ha. The CB ratio was 3.53 in BIPM plot while it was 2.84 in chemical treatment.

Jasmine

• Application of *Beauveria bassiana* (NBAIR formulation) at 5g/ litre of water along with 6 releases of *Trichogramma chilonis* and *Chrysoperla* at 7 days interval from bud initiation stage was superior in checking the bud borer with minimum bud

damage of 21.70 per cent followed by Azadirachtin @ 1500 ppm @ 2ml/L (25.42%). The flower yield ranged between 1650 and 1945 Kg/ha in the treatments while it was 1450Kg/ha in control.

Chickpea

• BIPM module with Bt application (Nos.) was statistically on par with insecticide treatment with 2.33 and 1.33Nos. of larvae /meter row respectively on 3rd Day After First Spraying (DAFS),. Similar trend was observed on 7 DAFS also. Pod damage was less in insecticide treatment (8.38%) when compared to the BIPM module with HaNPV (13.41%) and BIPM module with Bt (14.17%). There was 43.82 per cent increase in the yield in insecticide treatment followed by BIPM module with HaNPV (21.91%) and BIPM module with Bt (25.00%).

Bt cotton

• Rosette flowers due to pink boll worm was 1.22 per cent in BIPM plots while it was 2.87 per cent in the control plot on 110 Days After Sowing (DAS). There was 17.52 per cent reduction in the bad open bolls in BIPM module whereas 30.65 per cent reduction in bad open bolls was observed in insecticides treated plots. The yield was maximum in insecticide sprayed plots (2215Kg/ha) followed by 1890Kg/ha and 1598Kg/ha in BIPM and control plots respectively. CB ratio was higher in insecticide treated plots (1:2.57) than in BIPM plot (1:2.52).

Coconut

• The population of Rugose Spiralling Whitefly (RSW) nymphs was minimum (12.25Nos.) in the coconut trees sprayed with neem oil 0.5% followed by 13.33 numbers of nymphs in foliar application of *Isaria fumosorosea* (pfu-5) @ 1x10⁸cfu/ml, Foliar water spray (15.25Nos.) and *Encarsia guadeloupae* (natural conservation) (18.13Nos.) on 15th day after 2nd spraying. Parasitised nymphs were significantly more in *Encarsia guadeloupae* (natural conservation) (37.09%) than in foliar application of *Isaria fumosorosea* (pfu-5) @ 1x10⁸cfu/ml (26.24%), foliar application of neem oil 0.5% (24.84%) and Foliar water spray (30.22%) on 15th day after 2nd spraying.

c) Evaluation and bio efficacy of Biopesticides:

Pigeonpea

• NBAII-BTG4 @ 2% spray was effective in reducing the larval population of *Helicoverpa armigera* and *Maruca vitrata* in all stages of pigeon pea. Pod damage in NBAII BtG4 and insecticide treated plots was statistically on par with each other. Both the Bt formulation and the chemical sprays gave higher grain yield of 625 and 590 Kg/ha respectively than control (415 Kg/ha). The CB ratio was maximum (2.13) in NBAII BtG4 treatment.

Bhendi

• Among the biocontrol treatments, maximum reduction in fruit damage (83.43%) due to *Earias vitella* was registered in *Trichogramma chilonis* @50,000 parasitoids/ha, 6 releases at weekly interval followed by *Bacillus thuringiensis* @ 1 kg/ha (70.82%) while in insecticide sprayed plots there was 87.27 per cent reduction in the fruit damage. The fruit yield was also significantly high (9978Kg/ha) in *Trichogramma*

chilonis @ 50,000 parasitoids/ha, 6 releases at weekly interval while in control, the fruit yield was 8266Kg/ha.

Maize

Among the biocontrol agents, lowest plant damage of 39.67 per cent was observed in *Trichogramma chilonis* + NBAIR Bt 2% followed by *Trichogramma chilonis* + *Metarhizium anisopliae* Ma-35 (41.52%), *Trichogramma chilonis* + *Beauveria bassiana* NBAIR -Bb 45 (43.27%), *Trichogramma chilonis* + Spfr NPV(NBAIR1) (43.31%) and *Trichogramma chilonis* + EPN *H. Indica* NBAIR H38 (47.59%) on 7th day after first spraying of entomopahogens and insecticide, while in insecticide treated plots 38.62 per cent damage was observed. Similar trend was observed on 15th day after first spraying also. A maximum of 35.48 per cent egg parasitisation by *Telenomus* sp was observed in *Trichogramma chilonis* + NBAIR Bt 2%. Yield was maximum (3563Kg/ha) in *Trichogramma chilonis* + NBAIR Bt 2% plots followed by *T. chilonis*+ *Metarhizium anisopliae* Ma35 (3420Kg/ha) and these two treatments statistically onpar with each other while in the insecticide treated plots the yield was 3883Kg/ha.

Rice

• Soil application (2.5kg/ha) + Seed treatment *Bacillus subtilis* (10g/kg) + Seedling dip *Bacillus subtilis* (2.5kg/ha) + Foliar spray *Bacillus subtilis* (20g/lit)) was found to be the best in reducing the incidence of blast, brown spot, bacterial leaf blight, false smut to a considerable level. Yield was 3585Kg/ha in *Bacillus subtilis* treated plots and it was higher than the yield in Azoxystrobin (1ml/lit) (3295Kg/ha).

d) Large scale demonstration trials:

- 1. Large scale biointensive management of pink bollworm on *Bt* cotton 10acres In BIPM module pink bollworm incidence bad open boll was 22.00 per cent while it was 32.00 per cent in control. The yield increase in BIPM plots was 20.00 per cent over control plots.
- 2. Large scale biological suppression of rugose spiralling whitefly in coconut 25acres

BIPM module *ie., Encarsia guadeloupae* natural conservation + Release of *Apertochyrsa astur* eggs @1000/ha + Yellow sticky traps @ 20/ha was demonstrated in Chinnappampalayam, Anaimalai Block, Coimbatore Dt. In BIPM field, there was 80.00 per cent reduction in the population of Rugose spiralling whiteflies (RSW) while in control plot there was 60.00 per cent reduction in RSW population. Similar trend was observed in the population of Bondars Nesting Whiteflies also.

d) Technologies developed and adopted during the review period:

- 1. Biointensive management of pink bollworm on *Bt* cotton
- 2. Biological suppression of rugose spiralling whitefly in coconut
- 3. Bio-intensive insect management in brinjal
- 4. Card board boxes for transport and release of Chrysopids eggs
- 5. Labour saving method for collection of *Corcyra cephalonica* moths

SKUAST-Jammu

Brief Achievements:

a) Surveys, monitoring and biodiversity of fauna

- Surveys were conducted in different districts of Jammu and Kashmir and occurrence of fall armyworm, scales and mealy bug from aonla, guava and Alstonia, beetles form Til and guava, strawberry caterpillar, Alstonia galls and linseed pod bugs and predatory coccinellid beetles were recorded and identified
- Monitored the suspected invasion by *Tuta absoluta*, seeing the symptoms on tomato fruit. The pheromone traps for *T. absoluta* were installed in the suspected areas but no incidence of pest was found.
- Fruit fly incidence in mango and guava orchards was monitored through pheromone traps.

b) Biological Suppression

- Bio-ecological engineering for the management of major insect pests of maize was evaluated and the percent plant damage by *Chilo partellus* on maize was lowest and maize equivalent yield was significantly higher in maize + cowpea (intercrop) + sorghum (border crop). The natural enemies present in the ecosystem were coccinellids and spiders were more active in okra, mash and cowpea intercrops.
- Habitat manipulation for the management of *Helicoverpa armigera* in chickpea was evaluated.Significantly lower incidence of *H. armigera* larvae and consequent pod damage was recorded in chickpea + linseed (intercrop) + Napier / Mustard (border crop). Percent parasitization by *C. chloridae* was highest in coriander, followed by linseed and fenugreek. Grain yield and C:B ratio was also accordingly the highest.

c) Evaluation and bio-efficacy of biopesticides

- Biological control of scale insects, *Icerya purchasi* using entomopathogens in guava and aonla was evaluated. Significantly higher percent reduction in guava scale, *Icerya purchase* population was recorded in treatment *Lecanicillium lecanii* and was at par with *B. bassiana* and azadirachtin spray at 7 DAS.
- Biological control of mealy bug was evaluated using entomopathogenic *M. anisopliae*.Significantly highest percent reduction in mealybug population was recorded in *M. anisopliae* and azadirachtin spray followed by *B. bassiana* spray at 7 DAS.

d. Evaluation and bio-efficacy of biopesticides against plant diseases

- Biopesticide NBAIR-TATP strain *Trichoderma asperellum* (liquid formulation or its talc formulation) was found effective to manage Maize Turcicum leaf blight (*Exserohilum turcicum*). Percent disease index in carbendazim spray was comparable to that of *T. asperellum* (liquid formulation). Grain yield was significantly highest accordingly in both the treatments. The growth and yield attributes (plant height, length of cob, breadth of cob, no. of rows/cob, no. of grains/row and biomass) also corresponded respectively with the grain yield.
- NBAIR-TATP strain *Trichoderma asperellum* (Liquid formulation) and its talc formulation was found effective in the management of chickpea *Fusarium* wilt
(*Fusarium oxysporum f. sp. ciceris*). Percent wilt incidence in carbendazim spray was comparable with NBAIR-TATP strain *T. asperellum*.

- NBAIR-PFDWD strain *Psuedomonas fluorescens* (talc formulation) or its liquid formulation effectively managed pea rust (*Uromyces viciae-fabae*). Percent disease index in Mancozeb spray was comparable to that of *P. fluorescens* (NBAIR-PFDWD strain talc formulation), and significantly higher seed yield was obtained.
- NBAIR-PFDWD strain *Pseudomonas fluorescens* (talc formulation) or its liquid formulation effectively managedMustard white rust (*Albugo candida*). Percent disease index in Ridomil spray was comparable to that of *P. fluorescens* (NBAIR PFDWD strain talc formulation), and significantly higher seed yield was obtained.

OUAT, Bhubaneswar

Brief achievements:

a) Surveys, monitoring and Biodiversity of fauna:

- Survey on the exotic pest rugosespiralling whitefly, *Aleurodicus rugioperculatus* and its natural enemies in the coconut plantations of Puri, Odisha indicated its presence in Odisha during 2020 and its incidence also observed in Konark and Pipili areas of Odisha.
- During survey, ten species of spiders belonging to six genera were recorded in rice (var. swarna) at Bhubaneswar during *kharif* season and spider species *Tetragnatha mandibulata* was the most dominating in rice ecosystem.
- Surveys were conducted to know the status of invasive fall armyworm in Odisha during 2018 along with PPO (Quarantine), DDA (PP), Bhubaneswar and PPO, CIPMC, Odisha. Recommendations were given for managing the pest populations accordingly.
- Surveys were conducted in rice growing areas of in Odisha to know the status of rice hispa (*Dicladispa armigera*) during September 2018 and pest status wwas near ETL level.

b) Biological Suppression

- Sugarcaneearly shoot borer *Chilo infuscatellus* and *Scirpophaga excerptalis* were controlled by the weekly release of *Trichogramma* spp.in the farmers field under BIPM programmes.
- Rice leaf folder population was reduced by releases of *Trichogramma* spp. in rice under BIPM programmes.

c) Evaluation and bio-efficacy of biopesticides

- Neem biopesticides (azadirachtin) was found effective in managing foliar and sucking pests in rice in BIPM practice.
- Bio-efficacy of biopesticides and botanicals were evaluated and *L. lecanii* was superior in its performance and found comparable to azadirachtin 1500 ppm. Significantly highest yield (8.66 q/ha) was recorded in imidacloprid treated plots 17.8 SL (3ml/10L) followed by azadirachtin 1500 ppm (2ml/L) treated plots (7.47q/ha). The yield in *L. lecanii* treated plots remained at par with azadirachtin (7.45 and 7.40 q/ha).

d) Brief about each large scale demonstration trials

- Large scale bio-intensive pest management in rice pests was carried out during 2017-18 to 2021-22. Results revealed that the pest infestation in BIPM was at par with chemical. The damage incidence of silver shoot, dead heart, white ear head and leaf folder incidence were similar as in chemical treated fields. The average yield obtained in BIPM (52.65 q/ha) was next to chemical control (54.79 q/ha) and was significantly higher than untreated control (42.42 q/ha). The benefit cost ratio in BIPM treated plots was found highest (1.55) as against 1.44 and 1.21 in farmer practice and untreated control, respectively.
- Large scale demonstration of *Trichogramma* spp.*viz*. *Trichogramma chilonis and T. japonicum* for the management of sugarcane borer was carried out during 2017-18 to 2021-22. The incidence of early shoot borer, internode borer and top shoot borer was comparable to the chemical applied treatment and higher incidence was recorded in untreated control fields. The average yield in BIPM was 76.99 t/ha was comparable to chemical treated (73.2 t/ha) was and significantly higher than untreated control (59.34t/ha).
- Field trial against fall armyworm in *Rabi* maize was carried out during 2018-19. Various bio-modules were tested to manage the fall armyworm incidence in *Rabi* maize from 2018-19 to 2020-21. Among the tested modules, tricho-card releases + Bt sprays expressed highest average yield (14.86t/ha) and lowest pest damage and wasat par with emamectin benzoate check (16.42t/ha) and closely followed by tricho-card releases + *Pseudomonas* sprays. The obtained yield in untreated control field was (8.15t/ha).

NIPHM, Hyderabad

Brief achievements:

a) Surveys, monitoring and biodiversity of fauna:

- Recorded the predators fauna viz., Chrysoperla carnea, coccinellids viz., Cheilomenes sexmaculata, Coccinella transversalis, Coccinella septempuctata, Big eyed bug Geocoris sp., preying mantis, dragon fly, damselfly, Pentotomid bug, Eocanthecona furcellata, reduviid bug, Rhynocoris fuscipes, robber fly, long legged fly, carabid beetle, ear wig, hover fly, Rove beetle, Long horned grasshopper, spiders and wasp.
- Recorded parasitoids *Cotesia* sp., *Bracon*sp. and *Trichogrammasp.* from various host insects.

c) Evaluation and bio efficacy of biopesticides

• After the pot culture studies the *Nomuraea rileyi* (=*Metarhizium rileyi*) NIPHM MRF-1 strain will be evaluated for its efficacy in different agro-climatic zones under AICRP (BC).

ANGRAU

Brief achievements:

Surveys, monitoring and biodiversity of fauna:

• Outbreak of BPH, WBPH and sheath blight in paddy during *kharif* season and severe incidence of early shoot borer and inter node borer in rainfed sugarcane was recorded.

- Severe outbreak of white grub and yellow leaf disease in sugarcane was recorded in in endemic areas 2017-18.
- Severe outbreak of new invasive pest, fall armyworm *Spodoptera frugiperda* in maize during 2018 and later it was spread to ragi, bajra, sorghum and sugarcane during 2019.
- Incidence of invasive rugose spiralling whitefly (RSW) was recorded in coconut in the north coastal districts of Andhra Pradesh during February, 2019. Noticed severe outbreak of RSW in coconut, banana, papaya, sapota and guava during 2019.
- Severe outbreak of looper, *Perixera illepidaria* in mango was recorded.
- Natural occurrence of entomopathogenic fungus, *Nomuraea rileyi* on fall armyworm was recorded during 2019.
- Incidence of grasshopper, *Poekilocerus pictus* on *Calotropis* was recorded in Vzianagaram and Srikakulam Districts in May and June, 2020 in Andhra Pradesh.
- Spotted grasshopper *Aularches miliaris* incidence was recorded on *Wrightia tinctoria* and cashew in Vizianagaram and Visakhapatnam districts in May-June 2020.
- Mixed borer complex in maize *i.e.*, stem borer, *Chilo partellus*, pink borer, *Sesamia inferen sand S. frugiperda* was recorded as dominant species.
- Naturally infected rice skipper larva with *Fusarium verticilloides* was collected and reported.
- Parasitism of *Telenomus remus* and *Trichogramma chilonis* on fall armyworm eggs was recorded in maize and sugarcane.
- Parasitism of *Encarsia guadeloupa*e on coconut rugose whitefly was recorded during the year 2020-21.
- Root grub adult populations were collected from sugarcane growing areas of Visakhapatnam, Krishna, Chittore districts of Andhra Pradesh during July-September,2021 and *Schizonycha fuscescens* was identified as dominant root grub species and other species were *Maladera rufocuprea* and *Adoretuslasio pygus*, *Apogonia* sp. prevailing in sugarcane ecosystem.
- Natural infection of maize fall armyworm showing NPV infection was noticed.
- New invasive pest, flower thrips/ black thrips in chilli was identified as *Thrips* parvispinus and the incidence was severe (55-70%) in chilli.

Biological Suppression

Management of fall armyworm in maize using biocontrol agent and biopesticides in *Rabi* maize was carried out in 2018-2020. Field release of *Trichogramma pretiosum* (20,000/acre; 2 releases) + *Bacillus thuringiensis* (NBAIR Bt 25 @ 2ml/L; 3 spray) was highly effective followed by field release of *T. pretiosum* + *Metarhizium anisopliae* (NBAIR-Ma 35@ 5 g/L; 3 spray) with high cob yield and was on par insecticide check. The number of dead larvae was higher in *T. pretiosum* + *M. anisopliae* (42.9) followed by *T. pretiosum* + NBAIR Bt (41.9) and was on par with insecticide check. Cob yield recorded high in insecticidal check (42.1 q/ha) and was on par with *T. pretiosum* + NBAIR Bt (39.9 q/ha), *T. pretiosum* release + *M. anisopliae* (39.38 q/ha).

Evaluation and bio-efficacy of biopesticides:

- Management of rice stem borer and leaf folder using entomopathogenic nematodes and entomopathogenic fungi was evaluated during 2017 to 2019. The percentreduction in leaf folder damage (54.77%) and stem borer (43.18%) was highin *Bacillus thuringiensis* (NBAIR strain) @ 2ml/L, followed by *Metarhizium anisopliae* (NBAIR strain) and *Beauveria bassiana* (NBAIR strain). Highest grain yield recorded in *B.thuringiensis* (NBAIR strain) (4.15 t/ha), *B. bassiana* (NBAIR strain) (4.21 t/ha) which was on par with flubendiamide 40SC @ 0. 1ml/L (4.02 t/ha).
- Management of plant hoppers through BIPM approach was evaluated in rice during 2017-2019. Hopper population was significantly lower in BIPM plot (4.91 hoppers/hill) compared to farmers practice plot (6.31 hoppers/hill) and high in control plot (7.74 hoppers/hill). Grain yield recorded significantly high in BIPM practice i.e., *Beauveria bassiana* @ 5g/L, *Metarhizium anisopliae* @ 5 g/Lafter two sprayings (4.14 t/ha) as compared to farmer's practice i.e., monocrotophos @1.6 ml/L and acephate @ 1.5 g/L as two sprayings (3.74 t/ha) and low in untreated control (3.47 t/ha).
- Evaluation of Bacillus thuringiensis (NBAIR Bt G4) on pigeon pea against pod borer complex was carried out during 2017-2019. Spraying *Bacillus thuringiensis* (NBAIR Bt G4) @ 2 ml/L at pre-flowering, flowering and pod formation stages in pigeon pea against pod borer complex in comparison with chemical sprays (chlorpyriphos @ 2.5 ml/L at pre-flowering acephate @ 1.5 g/L at flowering, Chlorantraniliprole @ 0.3ml/L at pod formation. Foliar spray with ICAR-NBAIR *B. thuringiensis* Bt G4 effectively reduced *Maruca* leaf webber with 37.9% reduction in leaf webbing; 22.88 % reduction in pod damage and higher pod yield (676.7 kg/ha) with 48.62% yield increase over untreated control. Chemical sprays gave reduction in leaf webbing damage (37.8%) and pod damage (10.7%) with pod yield of 639.82 kg/ha and 40.8% yield increase compared to untreated control.
- Field evaluation of ICAR NBAIR endophytic entomopathogenic strains against shoot • borers (Chilo infuscatellus and Chilo sacchariphagus indicus) was carriedout in sugarcane during 2020-2022. Sugarcane early shoot borer cumulative incidence upto 120 days after planting recorded low in sett treatment and foliar spray two times with Metarhizium anisopliae NBAIR Ma-35 @ 5 g/L (6.65% deadheart, Beauveria bassiana NBAIR Bb-23 @ 5 g/L (7.65% deadheart) and B. bassiana NBAIR Bb-45 (7.99% deadheart) which are below ETL next to cholorantraniliprole (4.63 % dead heart) and was high in untreated control (27.75% dead heart). Internode borer incidence and intensity was significantly low in cholorantraniliprole sprays (40 % and 2.73%) and on par with B. bassiana NBAIR Bb-45 (41.25% and 3.1 5) and M. anisopliae NBAIR Ma-35 (46.25% and 2.95%). Cane yield recorded high in cholorantraniliprole treatment 76.2 t/ha) and was on par with NBAIR Bb45 (75.73 t/ha) and NBAIR Ma35 (72.52t/ha).
- Integration of botanicals, microbials and insecticide spray schedule for the management of pod borer complex in greengram was carried out during 2020-2022. Green gram pod borer, *Maruca virtata* damage was significantly low in spinosad and

was on par with *Bacillus thuringiensis* (NBAIR Bt G4). Green gram yield recorded high *B. thuringiensis* two sprays (7.39q/ha) next to chemical insecticide, spinosad two sprays (7.77q/ha); spinosad in one spray (7.59 q/ha) compared to azadiractin two sprays (5.4q/ha) and control (3.42 q/ha.).

- Laboratory bioassay of *Metarhizium* (=*Nomuraea*) *rileyi* (Anakapalle strain AKP-Nr-1) against maize fall armyworm, *Spodoptera frugiperda* during 2020-2022. High larval mortality of maize fall armyworm with *M.rileyi* (AKP-Nr-1) 1×10^9 spores / ml followed by *M. rileyi* (AKP-Nr-1) 1×10^8 spores / ml in leaf dip method (93.75%) and larval treatment method (92.8%). *M. rileyi* (AKP-Nr-1) showed LC₅₀ of (1.1×10⁸ spores/ml) and LT₅₀ at (1×10⁸ spores/ml) was 85.1 hours against maize fall armyworm.
- Field efficacy of *Metarhizium* (=*Nomuraea*)*rileyi* isolate (Anakapalle strain AKP-Nr-1; UAS, Raichur) against fall armyworm in maize was evaluated during 2020-2022. Maize fall armyworm damage was low at concentration 1×10⁸ spores/ml of *M. rileyi*Anakapalle strain and *M. rileyi*, UAS Raichur and on par with other higher concentrations. Percent reduction in fall armyworm incidence after two sprays of *M. rileyi* was high in *M. rileyi* (Anakapalle strain) 1×10⁸ spores / ml (60.69%) and *M. rileyi* (UAS Raichur strain)1×10⁸ spores/ml (59.13 %). Cob yield recorded high in *M. rileyi* (Anakapalle strain)1×10⁸ spores/ml (61.67q/ha) and *M.rileyi* (UAS,Raichur) 1×10⁸ spores / ml (60.49 q/ha) and low yield in control (32.69 q/ha).
- Management of coconut rugose spiralling whitefly (RSW) using entomopathogenic fungi, *Isaria fumosorosea* NBAIR Pfu5 was carried out during 2018-2020: High reduction in RSW intensity in *Isaria fumosorosea* NBAIR Pfu5 @ 5 g/L(2 sprays) + *Encarsia guadeloupae* release (63.47%) was recorded followed by *I. fumosorosea* NBAIR Pfu5 (2 spray) + *Dichocrysa* predator release (60.11%). Neem formulation 10000 ppm @ 1ml/L, two sprays results in low reduction in white fly intensity (18.79%).
- Ecofriendly management of stem rot, *Macrophomina phaseolina* in sesame using biocontrol agents was evaluated. NBAIR *Pseudomonas fluorescence* seed treatment @ 10 g/kg + *Trichoderma asperillum* soil drenching @ 5 g/L at 30, 60 days after sesame sowing was effective in managing stem rot, *M. phaseolina* in sesame (4.29%) with high grain yield (376 kg/ha), followed by *T. asperillum* as seed treatment @ 10 g/kg + *P. fluorescence* soil drenching @ 5 g/L (6.52%) with grain yield (353 kg/ha) and on par with chemical, carbendazim seed treatment @ 1 g/kg + soil drenching @ 5 g/L (stem rot 11.13% and yield 258 kg/ha) during 2020-2022.

d) Brief about each large scale demonstration trials:

• Large scale demonstrations of proven biocontrol technologies against sugarcane borers: Field Release of *Trichogramma chilonis* @ 50,000/ha at weekly interval, 8 times from 30 days after planting/ ratooning for early shoot borer and 4 times at node formation against internode borer reduced pest incidence. Early shoot borer and Internode borer incidence reduction was 66.6% and 27.9% in biocontrol compared to chemical control. Cane yield increase in biocontrol (66.19t/ha) over chemical control (57.54t/ha) was 14.8% (8.6 t/ha) additional yield resulted in additional returns of Rs.

24,220/- per ha. Saving in Cost of plant protection was 77% (Rs. 5000/- per ha) in biocontrol. Incremental benefit cost ratio was high Biocontrol (56.77) compared to Chemical control (10.29). This technology was included in University crop package of practices for the integrated pest management of sugarcane pests and also fits in organic farming.

- Efficacy of entomopathogenic nematode, *Heterorhabditis indica* (ICAR-NBAII H38) for the management of sugarcane white grub (2017-18 to 2019-20): Large scale demonstrations and promotion of *H. indica* (NBAIR-H38) effectively reduced the white grub, *H. consanguinea* in sugarcane and increased cane yield in white grub endemic of Andhra Pradesh. Reduction in white grub damage was 85.5% in biocontrol compared to untreated control. Cane yield increase in biocontrol (79.4 t/ha) over untreated control (32.0t/ha) was 59.7% with 47.4 t/ha additional yield. Monitory Benefit with biocontrol compared to untreated control (Rs. 4800/- per ha). Cost benefit ratio was high in biocontrol (1.51) compared to untreated control (0.88). This technology was included in University crop package of practices for the integrated pest management of sugarcane pests and also fits in organic farming.
- Evaluation of entomopathogenic fungi, *Metarhizium anisopliae* (ICAR-NBAIR Ma4) for the management of sugarcane white grub:Soil application of *M. anisopliae* (NBAIR Ma 4) @ 2.5 kg/ ha enriched in 250 kg FYM per hectare, two times at monthly interval or at onset of monsooneffectively reduced the grub population (85-86%) and plant damage (91-92%) resulted in increased cane yield (62.3%) with 56.5t/ha additional yield in biocontrol (90.7 t/ha) over untreated control (34.2t/ha). Additional returns with biocontrol was Rs.1, 38, 425/- per ha with low cost of adoption of biocontrol (Rs. 2600/- per ha). Cost benefit ratio was high in biocontrol (2.02) as compared tountreated control (0.78). This technology was included in University crop package of practices for the integrated pest management of sugarcane pests and also fits in organic farming.
- Bio suppression of *Chilo partellus, Sesamia inferens* with *Trichogramma chilonis* on *Rabi* maize during 2017-18. Field release of *T.chilonis* @1,00,000 per ha from 15 days after seedling emergence three times at weekly interval resulted in 92.6% reduction in *C. partellus*, 49.52% reduction in *S. inferens* and resulted in higher cob yield (27.17 q/ha) with 19.96% yield increase compared to farmers practice i.e., spraying monocrotophos @ 1.6 ml/L. Incremental benefit cost ratio of biocontrol was high (60.86) compared to farmers practice (8.8).
- Large scale demonstration for the management of fall armyworm in maize using biocontrol agents and biopesticides was carried out during year 2019-20 to 202-22. Field releases of *T. pretiosum* @ 50,000/ha or *T. chilonis* @ 1,00,000/ha from 7 days after seedling emergence (2 times) and spraying *Bacillus thuringiensis* (NBAIR Bt 25) @ 2 ml/L or *M.anisopliae* (NBAIR Ma 35) @ 5 g/Lfrom 20 days after seedling emergence (3 times at 10 day interval) was found effective in controlling fall armyworm in comparison with insecticidal check (Azadirachtin + chlorantraniliprole + emamectin benzoate sprayings). Cobyield recorded in biocontrol treatments egg

parasitoid + Bt was 39.97q/ha followed by egg parasitoid + *M. anisopliae* (39.38 q/ha) and was on par with chemical check (40.18 q/ha). Benefit cost ratio was high in egg parasitoid + *M. anisopliae* (18.98) followed by insecticidal check (16.54) and egg parasitoid + Bt(13.04).

- Bio-intensive pest management in Rice (2017-2019): BIPM practices includes *Pseudomonas flourescens* @ 10 g/kg seed treatment ; spraying *P. flourescens* @ 5 g/L two times from 30-40 days after transplanting against foliar diseases (blast, sheath blight), three release of *T.chilonis* @ 1,00,000/ha for leaf folder and *T. japonicum* @ 1,00,000 /ha/ releasefor stem borer from 25 days after rice transplanting in rice after monitoring the adults in comparison with farmers practice (application of carbofuran granules 3G @ 10 kg/ha, at 30 DAP, two sprayings with chlorpyriphos @ 2.5 ml/L, acephate @ 1.5 g/L and two sprays with propiconazole @ 1ml/L). BIPM technology in rice gave reduction in pest damage i.e., leaf folder damage by 77.04%; stem borer damage by 84.13% and sheath blight incidence by 42.16 % resulted in 12.81% yield increase in BIPM (5.74 t/ha) compared to farmers practice (5.09 t/ha) with net returns of Rs. 17,928 /- per ha and high incremental benefit cost ratio in BIPM (2.36) compared to chemical control (1.57).
- Management of coconut rugose spiralling whitefly using entomopathogenic fungus, *Isaria fumosorosea* NBAIR Pfu-5 (2020-2022): Two spray of *I. fumosorosea* NBAIR Pfu-5 @ 5 g/L + sticker @ 10 ml/Lat 15 day interval and release of *Encarsia guadeloupae* parasitoid gave 70-75% reduction of rugose spiralling whitefly in coconut compared to neem formulation (Azadirachtin 10000ppm) (19-22% pest reduction). Noticed conservation of parasite *E. guadeloupae* and multiplication of *I. fumosorosea* NBAIR Pfu5 in demonstrated coconut orchards and farmers are redistributing *Encarsia* parasite for RSW management.

e) Technologies developed and adopted during the review period:

- Field release of temperature tolerant strain *Trichogramma chilonis* @ 50,000/ha at weekly interval, 8 times from 30 days after planting/ ratooning for early shoot borer and 4 times at node formation against internode borer.
- Bio-efficacy of entomopathogenic fungi, *Metarhizium anisopliae* (NBAIR Ma4) @ 2.5 kg/ ha mixed with 250 kg FYM at planting or onset of monsoon rains two times at monthly interval for white grub management.
- Bio-efficacy of entomopathogenic nematodes NBAII H38 @ 20 kg/ha in 150 kg mixed with moist sand or entomopathogenic fungi, *Metarhizium anisopliae* (NBAIR Ma4) @ 2.5 kg/ ha mixed with 250 kg FYM at planting or onset of monsoon rains two times at monthly interval white grub management.
- Foliar spray with ICAR-NBAIR *Bacillus thuringiensis* (Bt G4 @2 ml/L), 3 times at pre-flowering, flowering and pod formation stages in pigeon pea effectively reduced *Maruca* leaf webber.
- Bio-intensive pest management in rice i.e., seed treatment with *Pseudomonas* flourescens @ 10 g/L; spraying *P. flourescens* @ 5 g/L two times from 30 40 days after transplanting against foliar diseases (blast, sheath blight); Field release ofbiocontrol agent, egg parasitoid, *Trichogramma chilonis* @ 50,000/ha, 3 times for

leaf folder and *Trichogramma japonicum* @ 50,000/ha/ release, 3 times for stem borer from 25 days after rice transplanting in rice after monitoring the adults.

- Management of fall armyworm in maize using biocontrol agents and biopesticides i.e., release of *Trichogramma pretiosum* @ 50,000/ha or *T.chilonis* @ 1,00,000/ha from 7 days after seedling emergence, 2 spray of *Bacillus thuringiensis* (NBAIR Bt 25 @ 2 ml/L) or *Metarhizium anisopliae* (NBAIR Ma 35 @ 5 g/L) from 20 days after seedling emergence, 3 times at 10 day interval for the management fall armyworm in maize compared to insecticidal check (Azadirachtin + chlorantraniliprole + emamectin benzoate sprayings).
- Management of coconut rugose spiralling whitefly using *Isaria fumosorosea* and *Encarsia guadeloupae* parasotoid as spraying *I. fumosorosea* (NBAIR- Pfu5) @ 5 g/L with sticker @ 10 ml/L as two sprays + release of parasite, *E. guadeloupae* at 15 days after *I. fumosorosea* first spraying was adapted.

AAU, Anand

Brief achievements:

Surveys, monitoring and biodiversity of fauna

- The activity of biocontrol agents' *viz.*, *Trichogramma* spp., *Chrysoperla zastrowi sillemi*, *Cryptolaemus montrouzieri*, *Cheilomenes sexmaculatus*, spiders, antagonistic bacteria-Bt, entomopathogenic nematodes (EPN) was recorded in kharif and rabi crops.
- *Trichogramma chilonis* from cotton and castor and *Trichogrammatoidea bactrae* was recorded from cotton fields.
- Total 149 spider were collected from rice ecosystem and represented five families namely Araneidae, Thomisidae, Oxyopidae, Tetragnathidae and Salticidae. *Neoscona theisi* was found dominant followed by *Agriope* sp. in rice.
- Twelve soil samples were found positive for *Beauveria* spp.
- Four new native insect pathogenic isolates have been identified (*Providencia vermicola* AAUBC-Pv1, AAUBC-Pv2, AAUBC-Pv2, *Paenalcaligenes* spp. AAUBC-Pa1)
- Eight soil samples were found positive for EPN. Out of 8 isolates, 7 turned out to be *Steinernema pakistanense* (GenBank accession No. MK491792, MK491793, MK491794, MK491795, MK491796, MK491797, MK491798).
- Six soil samples found positive for EPN and *Metarhizium* spp.
- During the survey of invasive pest *Spodoptera frugiperda* NPV infected larvae were collected. NPV occlusion bodies (OBs) were isolated and pathogenicity of the virus was confirmed.
- The native isolate of *Heterorhabditis indica* AAU-R strain (Genbank accession no. MW418203) was documented from the soil collected from Talala, SasanGir, Gujarat.
- The egg parasitoids of fall armyworm *viz.*, *Chelonus formosanus* and *Telenomus remus* was documented with Genbank accession No. OM422609 and OM424280, respectively.

- The predator *Mallada* sp. was collected in the coconut orchards infested with invasive rugose spiralling whitefly.
- The nuclear polyhedrosis virus (NPV) infected insect pests were recorded in various crops. The NPV infecting spotted pod borer, *Maruca vitrata* was recorded in cowpea fields of AAU, Anand.
- The intensity of papaya mealybug infestation was very low to medium and the parasitoid *Acerophagus papayae* was noticed parasitizing mealy bug.
- Natural enemy *Nesidiocoris tenuis* was observed predating *Tuta absoluta* in tomato under North Gujarat conditions.
- In the year 2020-21, rugose spiralling whitefly infestation to the tune of 60-70% was noticed in Junagadh, Gujarat.
- The incidence of fall armyworm in maize fields (20-25%, during June, July and August 2021) and invasive thrips, *Thrips parvispinus* in chilli fields (20-30%, January 2022) of Anand district was recorded.

Evaluation and bio-efficacy of biopesticides:

- Biological suppression of mustard aphid, *Lipaphis erysimi* was studied and among the various biocontrol treatments *Beauveria bassiana* + *Lecanicillium lecanii* recorded the low aphid index (1.51) with highest seed yield (4.77q/ha).
- Efficacy of biocontrol agents for management of fruit borer, *Earias vittella* on okra was evaluated. Lowest number of *E. vittella* larvae/plant was recorded in the treatment *Bacillus thuringiensis* @ 5 g/Lamong different biological control agents. The efficacy of biopesticide *B. thuringiensis* was nearly equal to that of chemical insecticide used.
- Biological suppression of fall armyworm in maize was evaluated during 2019-20 and 2020-21. Among the different biocontrol agents tested, significantly lowest number of *S. frugiperda* larvae/ 10 plants was recorded in the treatment *Trichogramma* pretiosum + Bacillus thuringiensis-NBAIR BTG1-1% WP and was at par with *T. pretiosum* + Metarhizium anisopliae NBAIR Ma35-1% WP and *T. pretiosum* + Pseudomonas fluorescens NBAIR Pf DWD-1% WP.
- Biointensive pest management (BIPM) module for the management of shoot and fruit borer, *Leucinodes orbonalis* in brinjal was developed. The significantly lowest shoot damage was recorded in BIPM module (2.27%) followed by chemical module (3.31%). With regard to the data on fruit damage recorded on number and weight basis depicts the significantly lowest fruit damage in BIPM module (2.50% on number basis, 3.24 % on weight basis) than the fruit damage recorded in chemical module (3.84% on number basis, 4.81% on weight basis). The BIPM module recorded the highest fruit yield of 374.31 q/ha and it was statistically at par with the yield recorded in chemical module (346.78 q/ha). The lowest fruit yield was recorded in untreated control module (85.23 q/ha). Hence, it can be concluded that the BIPM module is effective in reducing the shoot and fruit borer damage with higher fruit yield.
- Influence of habitat manipulation on incidence and severity of pest damage in cabbage was evaluated during 2020-21 and 2021-22. Cabbage intercropped with

mustard and cowpea recorded the lowest aphid population (8.14/ plant). Lower larval population of DBM (1.27/ plant) was recorded in cabbage intercropped with cowpea and oats as border crop. The influence of intercrops in reducing the pest incidence was reflected in yield of the crop. The highest yield of 25.75 q/ha was recorded in the treatment in cabbage intercropped with cowpea and oats as border crop. Hence, intercropping of cabbage with cowpea and oats as border crop helps in reducing the pest incidence with higher yield.

- Efficacy of different biocontrol agents was evaluated against onion thrips, *Thrips tabaci*. Among the different biopesticides evaluated, *Metarhizium anisopliae* AAU strain Ma1 (3.70 thrips/plant) was effective with lowest number of thrips/plant and untreated control treatment recorded the highest thrips population of 15.02 thrips/ plant. The efficacy of biopesticide treatments in reducing the thrips population was depicted in bulb yield of onion. The treatment *M. anisopliae* AAU strain Ma1was found promising in getting higher bulb yield (113.67 q/ha). The untreated control treatment recorded the lowest bulb yield of 45.33 q/ha.
- Bio-efficacy of different bio-agents *Trichoderma harzianum* and *Pseudomonas fluorescens* was tested against the early blight of tomato.The treatment Th+Pf (SA+RD) + Azoxystrobin 23% SC (FS) found effective in reducing the early blight disease intensity (9.26%). Among the treatments, foliar spray of biopesticides were evaluated as foliar spray i.e Th+Pf (SA+RD+FS) recorded the lowest disease intensity (16.50%). The untreated control treatment recorded the disease intensity of 39.83%.
- Bio-efficacy of different bio-agents *Trichoderma harzianum*a and *Pseudomonas fluorescens* was tested against the early blight of potato. The treatment Th+Pf (SA+ST)+Kresoxim-methyl 44.3% SC (FS) found effective in reducing the early blight disease intensity (8.52%). Among the treatments where the biopesticides were evaluated as foliar spray, the treatment Th+Pf (SA+ST+FS) recorded the lowest disease intensity (17.17%). The untreated control treatment recorded the disease intensity of 40.60 %.

Brief about each large scale demonstration trials:

- Large scale bio-intensive pest management on rice was taken during 2017-18 to 2019-20. Lowest pest damage was recorded in BIPM package as compared to farmers' practice. With regard to the yield, the two treatments found at par with each other. The use of BIPM strategies resulted in lower incidence of rice leaf folder and higher grain yield. In BIPM package block these corresponding figures were 7.75, 10.62 and 12.62 per cent. Significant grain yield (39.10 q/ha) was recorded in BIPM package as compared to farmers practice (36.43 q/ha). It can be concluded that use of BIPM strategies resulted in lower incidence of rice leaf folder and higher grain yield.
- Bio-intensive pest management in Bt cotton during 2017-18 to 2019 was demonstrated. The number of PBW damaged bolls were 28.88% in BIPM package and 26.23% infested bolls in farmers practice treatment. In case of sucking pests, there was an incidence of thrips and aphid only. Farmers practice package recorded less number of aphid (4.88/leaf) compared to BIPM package (5.86 /leaf). BIPM package

recorded 22.03 q/ha cotton seed which was on par with the yield recorded in farmers practice (23.12 q/ha). With regard to thrips population BIPM package found equally effective as compared to farmers practice.

- Bio-intensive pest management of *Helicoverpa armigera*, *Tuta absoluta* and sucking pestsof tomato was demonstrated during 2017-18 to 2019-20. BIPM package found equally effective as chemical control against *H. armigera*. Similarly, with regard to fruit yield recorded in chemical control module (16.43-16.87 t/ha) was at par with the yield recorded in BIPM package (16.05-16.25 t/ha). It can be concluded that BIPM package is promising in minimizing the pest damage with higher yield.
- Large scale demonstration of bioagents based IPM module for whitegrub in groundnut was demonstrated 2017-18 to 2019-20. Lower incidence of whitegrub was noticed in IPM module (0.39 larva/meter length row) module compared to farmers' practice (1.42 larva/meter length row) and similarly the higher yield in IPM module. It can be concluded that adoption of bioagents based IPM module will be useful for the effective management of whitegrub menace in groundnut crop.
- Large scale demonstration on bio-intensive pest management in okra was demonstrated during 2020-21 to 2021-22. Between the two modules demonstrated for bio-intensive pest management in okra, the lowest larval population was recorded in chemical module (*H. armigera* 0.86/ plant, *E. vittella* 2.88/plant) and it was found at par with the population documented in BIPM module (*H. armigera* 1.21 larvae / plant, *E. vittella* 3.82/plant). Whereas, the fruit damage was significantly lower in BIPM module (3.08 % number basis, 3.51 % weight basis) as compared to chemical module (4.94% number basis, 4.88 % weight basis). Sucking pest incidence such as whitefly and jassid was less in BIPM module. The BIPM module (111.21 q/ha). The BIPM module has witnessed significantly the highest population of coccinellids (2.60/ plant). This result demonstrates the successful bio-intensive module, which helps in reducing the pest incidence and damage in okra crop with higher fruit yield.
- Large scale demonstration on bio-intensive pest management in cabbage was demonstrated during 2020-21 to 2021-22. Between the two modules demonstrated for bio-intensive pest management in cabbage, the lowest larval population of diamond back moth was recorded in BIPM module (2.09/plant) as compared to chemical module (3.03/plant). With regard to aphid population, the BIPM module recorded significantly lowest population (13.64/plant) than chemical module (17.65/plant). With respect to the population of natural enemies, BIPM module witnessed highest coccinellids population (2.53/ plant) which was significantly higher than the population observed in chemical module (0.69/plant). Further, BIPM module recorded the significantly lowest fruit damage (3.09%) as compared to chemical module (4.41%). Due to significant low fruit damage in BIPM module, highest yield (29.63 t/ha) was recorded and it was statistically at par with the yield documented in chemical module (23.50 t/ha).

• Large scale demonstration on bio-intensive management of mango hopper was demonstrated during 2020-21 to 2021-22. The large-scale demonstration of BIPM module for mango hopper was comprising sole component, microbial biopesticide *Metarhizium anisopliae* was found highly effective in reducing the hopper population. This demonstrate the successful biointensive management of mango hopper with microbial biopesticide *Metarhizium anisopliae* (NBAIR Ma-4) 1% WP.

e) Technologies developed and adopted during the review period:

- The farmers of middle Gujarat (Agro-climatic Zone III) growing okra are advised to spray *Bacillus thuringiensis* (1% WP) @ 50g /10L of wateror NSKE 5% (500g/ 10L water) at fifteen days interval for three times or six releases of *Trichogramma chilonis* @ 50,000/ha at weekly interval starting from the initiation of shoot and fruit borer, *Earias vittella* for the effective biological control (Year: 2019-20)
- Application of *Bacillus thuringiensis* NBAIR strain-BtG4 (1% WP 2×10⁸cfu/g) @ 50g/10 L water or *Bacillus thuringiensis* AAU strain-AAUBt1 (1% WP 2×10⁸cfu/g) @ 50g/10 L for three times at ten days interval with the initiation of the pest found effective for the management of fall armyworm in maize (Year: 2020-21).
- Three releases of *Trichogramma pretiosum* @ 20000/acre at weekly interval followed by the spray of *Bacillus thuringiensis* NBAIR BtG4 1% WP @ 50 g/ 10 Lfor three times at ten days interval with the initiation of pest found effective for the management of fall armyworm in maize (Year: 2021-22)

AAU, Jorhat

Brief achievements:

a) Surveys, monitoring and biodiversity of fauna:

- Total 16 species of spiders were recorded from 8 different families' viz. Tetragnathidae, Lycosidae, Araneae, Oxyopidae, Araneidae, Salticidae, Attidae and Linyphidae. Collected species of spiders were Tetragnatha javana, Tetragnatha bengalensis, Tetragnatha maxillosa, Lycosa pseudoannulata, Pardosa sumatra, Oxyopes shweata, Oxyopes javanus, Cyclosa insulate, Argiope pulchella, Argiope catenulate, Araneus sp., Neoscona bengalensis, Phidippus indicus, Plexippus sp, Atypena (=calitricha) formosan) collected from different rice fields of Jorhat, Golaghat and Sivasagar districts.
- Among which *Lycosa pseudoannulata*, *Oxopes javanus* and *Tetragnatha* spp. were most dominant.
- The dominance of egg parasitoids were *Trichogramma* sp. and *Telenomous* sp (9.9% parasitism) and *Cotesia* sp. with 15.8% parasitization in leaf folder larvae was recorded.
- Nine species of predator viz., *Spalgius epius*, Chysopids, *Coccinella septempunctata*, *C. transversalis*, *Serangium parcesetosum*, *Harmonia dimidiata*, *Cheilomenes sexmaculat*, *Brumoides saturalis* and *Cryptolaemus* sp. were recorded from different vegetables.

- Parasitoids viz., Cotesia glomerata parasitizing larvae of Piresis barassicae, Campoletis chlorideae (larval), Trichogramma chilonis, Bracon spp. Parasitizing Helicoverpa armigera.
- *Diaeretiella* sp. from aphid, *Encarsia* sp.from whitefly and *Phanerotoma* sp. as a larval parasitoid from brinjal pest were also recorded.

b) Biological suppression

- Seasonal abundance of spiders in rice ecosystem was evaluated. Total 650 spiders were collected using visual, sweep net and pitfall traps. In total of 16 species collected from rice ecosystem. Relative abundance of *Oxyopes* spp. was 35.76% and was the most predominant species followed by *Lycosa pseudoannulata* (28.45%) and *Tetragnatha* spp. (22.76%), respectively.
- Biological suppression of rugosespiraling whitefly (RSW), *Aleurodicus rugioperculatus* in coconut was evaluated during 2020-22. The parasitism of *Encarsia* sp. on whitefly was ranged between 14 to 27%. The live colonies of whitefly was varied from 1.20 to 4.22 and 1.00 to 3.23 per leaflets, respectively at HRS, Guwahati and AAU, Jorhat) of study. In addition, the activity of predators such as spider, coccinalids and lacewing were also recoded.
- Bio-intensive insect management in brinjalwas carried out andduring 2017-18 to 2019-20. Based on 3 years experiment, MLT and OFT results the technology was included in AAU PoP as application of azadirachtin 1500 ppm @ 2 ml/L of water, *Lecanicillium lecanii* @ 1×10⁸ spores/ml (5g/L of water) with eight releases of *Trichogramma chilonis* (MITs) @ 1,00,000 adults/ ha at weekly interval starting from initiation of flowering was found effective in controlling pests of brinjal.
- Role of habitat manipulation for insect pests, nematodes and natural enemies in brinjal was evaluated during 2017-18 to 2019-20. The incidence of sucking pest (aphids/ leaf) and *Leucinodes orbonalis* was significantly lower in brinjal intercropped with carrot and cowpea as border crop with least population of aphid (0.86/leaf) and per cent shoot (9.19) and fruit (12.94) infestation and maximum yield of 201.87 q/ha as compared to brinjal as sole crop, brinjal intercropped with cowpea and coriander as border crop and brinjal intercropped with coriander and carrot as border crop. Significantly, higher number of coccinellids predator population of 2.92 / plant was also recorded in brinjal intercropped with carrot and cowpea as border crop.
- The biointensive IPM module was evaluated against key pest so okra (2020-21 to 2021-22). The pooled data revealed that the six chemical sprays at intervals contributed maximum protection from infestation with lower larval infestation (1.65) and fruit damage (7.30%) as against 2.00 and 8.10%, respectively, in BIPM practice. However, highest marketable fruit yield of 76.12 q/ha was recorded in BIPM practice, whereas in chemical control yield was 68.92 q/ha. The percent parasitism on *Corcyra* sentinel cards by *Trichogramma* spp. in BIPM plot was 8.4% as against 2.25% in chemical control plot.
- BIPM module was evaluated against fruit flies *Bactrocera dorsalis* in cucumber during 2020-21 to 2021-22. From the pool data of 2 years, it was found that BIPM package revealed minimum percent damaged fruits (16.27%) and was lower than

chemical control (27.67%) at 65 days after sowing (DAS). The marketable fruit yield was 85.67 q/ha in BIPM package in comparison to conventional package (58.87 q/ha). The maximum percent damaged fruits (34.74 %) was recorded in untreated control plot with minimum yield of 45.51 q/ha.

Evaluation and bioefficacy of biopesticides

- Bio-efficacy of entomopathogenic fungus was evaluated against mustard aphid during 2017-18 and 2019-20. Three spraying of entomopathogenic fungus, *Beauveria bassiana* (AAU-J culture) @ 5g/L was the most effective treatment against mustard aphid (8.72% per 10 cm apical shoot) with 66.13% population reduction after 3rd spray and produce yield 7.85 q/ha and was at par with *Lecanicillium lecanii* (AAU-J culture) @ 5g/L in their efficacy. The mean population of aphid in *L. lecanii* was 10.05% per 10 cm of apical shootwith 58.38% population reduction and yield 7.83 q/ha in comparison to *Metarhizium anisopliae* (AAU-J Culture)10⁸ @ 5g/L and azadirachtin 1500 ppm @ 2 ml/L.
- Bio-efficacy of entomopathogens against banana fruit and leaf scaring beetles, *Nodostoma subcostatum*. Four time filling of leaf axil with *Beauveria bassiana* (AAU Culture) @ 10⁸ spore /5 ml at 15 days interval showed maximum reduction (47.24%) over control.
- Field evaluation of ICAR-NBAIR entomopathogenic strains was carried against cabbage aphid, *Myzus persicae* and dimond back moth, *Plutella xylostella* (DBM) during 2019-20 to 2021-22. The pool data of 3 years found that four alternate spraying of chemical insecticide at 15 days interval could significantly reduce the mean population of *B. brassicae* and *P. xylostella* in cabbage in comparison to different biopesticides and gave a maximum yield of 206.50 q/ha. Among the different EPF, V1-8 isolate of *L. lecanii* @ 5 ml/L was the best treatment in reducing the mean population of aphid (3.17/plant) and DBM(4.74/plant), with highest yield of 205.25q/ha.
- Evaluation of entomopathogenic biopesticide was carried against *Aphis craccivora* in cowpea (*Vigna unguiculata*) during 2020-21 to 2021-22. The minimum number of *A*. *craccivora* was recorded in the field treated with *Verticilium lecanii* 1×10⁸ cfu/ml @ 5gm/L which was at par with spinosad 45 SC @ 0.3 ml/L with maximum yield.
- Evaluation of microbial antagonist was carried out for the management of ginger rot disease. The highest per cent germination (84.25) and highest number of tillers per plant (20.33) were recorded in seed treatment with *Pseudomonas fluorescens* + spraying of *Trichoderma harzianum* (commercial formulation). The percent disease infested plants was 14.67% with yield of 18.00 t/ha. However, it was observed that all the biopesticides were equally effective in rhizome germination and producing tillers per plant compared to untreated control, where the germination per cent was only 61.67 with 11.33 nos. tillers/plant.

Large-scale demonstration trials

• Large scale demonstration trials for proven bio control technologies was adapted in 10 ha area during 2017-18 to 2021-22. The large scale demonstration included biocontrol technologies like seedling root dip treatment with *Pseudomonus fluorescens* (2%)

solution), two sprays of azadirachtin 1500 ppm (3 ml/litre), erection of bird perches (15 no. /ha), spray of *P. fluorescens* (1.5 kg/ha) against foliar diseases and six release of *T. japonicum* @ 1,00,000 /ha at ten days interval starting from 30 DAT against *Scirpophaga* spp. and *Cnaphalocrocis* spp in comparison to chemical control (farmer practice) four alternate spray with chlorpyrifos @ (2.5ml/L) and quinalphos (2.5ml/L). Result revealed the large scale BIPM is equally effective as chemical control in terms of yield and benefit cost ratio. Adoption of BIPM increased the population of spider, coccinellids as compared tochemical control.

- Validation of BIPM practices against pest complex of organic Black rice was carried in *kharif* 2020 in an area of 1 ha at Jorhat. The BIPM practices included seedlings root dip with *Pseudomonas fluorescens* (2% solution), application of organic manure MUKTA 2t/ha, *B. bassiana* (10¹³spores/ha) against sucking pests and release of six release of *T. japonicum* (100000 adults/ha) and bird perch (10/ha) for borer pests and need based application of NSKE (5%) (5 ml/L). Farmer practice included two rounds of Chlorantraniliprole 18.5 SC were sprayed against insect pests of rice. Results revealed that the incidence of dead heart and white ear head and leaf folder were lower in both BIPM and farmers practice field. However the grain yield was more in BIPM (3.13 ton/ha) than in farmers practice plots (2.88 ton/ha).
- Demonstration of BIPM module was carried out against fall armyworm, *Spodoptera furgiperda* on *Rabi* maize. Results revealed the larval count of *S. frugiperda* was 1.42 larvae/plant as compared to chemical sprayed farmer practice (1.58 larvae/plant). In BIPM plot plant damage was significantly lower (15.93%) after application of treatment as against farmers practice plot (23.84%) and highest yield of 42.95 q/ha was recorded in BIPM which was significantly higher than farmers practice with 35.12 q/ha.

Technologies developed and adopted during the review period:

- Three spraying of entomopathogenic fungus, *Beauveria bassiana* (AAU-J culture) @ 5g/L was the most effective treatment against mustard aphid which was statistically at par with *Lecanicillium lecanii* (AAU-J culture) @ 5g/L in their efficacy in respect of mean population of aphid and yield in comparison to *Metarhizium anisopliae* (AAU-J Culture) 10⁸ @ 5g/L and Azadirachtin 1500 ppm @ 2 ml/L.
- The incidence of sucking pest (aphids/ leaf) and *Leucinodes orbonalis* was significantly lower in brinjal intercropped with Carrot and Cowpea as border crop and gave maximum yield compared to brinjal as sole crop, brinjal intercropped with Cowpea and Coriander asborder crop and brinjal intercropped with Coriander and Carrot as border crop. Significantly, higher number of coccinellids predator population was also recorded in brinjal intercropped with Carrot and Cowpea as border crop.
- **BIPM on rice:** Six release of egg parasitoids *Trichogramma* spp. @ 50,000/ha (six releases) on observing the moths of yellow stem borer and application of *Beauveria bassiana* impregnated Rice Husk Saw Dust Rice Bran (RHSDRB) medium @ 3kg/ha in 600 litres of water (10⁷ spores/ml) included in package of practices for *Kharif* Crops of Assam, 2019.

- Management of papaya mealybug (*Paracoccus marginatus*) was developed and included in PoP of Horticultural crop, 2021, AAU, Jorhat). Removal of weeds/ alternate hosts like *Hibiscus* sp. and application ofsticky bands or alkathene sheet on main stem of the plant to prevent up ward movement of crawlers. Prevention of the movement of ants with destruction of already existing ant colonies in the vicinity, conservation of natural enemies like *Coccinella septumpunctata*, *Coccinella transversalis*, *Cheilomenes sexmaculata* and *Spalgisepius*, release of *Acerophagous papaya* (Hymenoptera: Encyrtidae) @ 500-1,000/ha for three times at weekly interval.Chemical: spot spraying of neemoil (1 to 2%) 500 ppm @ 5ml/L, or 1000ppm @ 3ml/L or 1500ppm @ 1ml/L, NSKE (5%), profenophos 50EC(2 ml/L),thiamethoxam 25 WG (26g ai/ha) andimidacloprid 17.8SL(1ml/3L).
- Biointensive IPM against shoot and fruit borer of brinjal was developed using inputs of azadirachtin1500 ppm@ 2 ml/L, *Lecanicillium lecanii* @ 1×10⁸ spores/ml (5 g/L) and eight releases of *Trichogramma chilonis* (MITs) @ 100000 ha at weekly interval starting from initiation of flowering and this input included in PoP Horticultural crop, 2021, AAU, Jorhat.
- Organic plant protection techniques in okra: Use of pheromone traps for *Helicoverpa* armigera (Heli lure), Spodoptera litura (Spodo lure) and E. earias (Earias lure) @ 5/ha, Use of yellow sticky traps for whitefly and thrips @ 10 traps/ha. Six releases of *T. chilonis* or *T. priteosum* @ 100000 adults/ ha against *H. armigera* at weekly interval need based application of neem oil 500 ppm @ 5 ml /L as an alternative to chemical insecticides at an interval of 15 days. Seed treatment with Org-Pochojal (aliquid bioformulation of *Pochonia chlamydosporia*, AAU product) @ 5 ml/L enriched compost @ 2 t/ha for root knot nematode. Seed treatment with *Bacillus megaterium* @ 5 ml/L + soil application of 2 ton of vermicompost enriched with 5 liter of *B. megatorium*/ha also reduces the infestation of root knotnematode. This PoP practices included in organic agriculture, 2021, AAU, Jorhat.
- Plant protection techniques in organic cabbage: Use of pheromone trap with lures are for pests liked *Plutella xylostella*; *Pieris* spp.; *Helicoverpa armigera* (Heli lure); *Spodoptera litura* (Spodolure) etc (8 traps/ha) with luresfor each pest, keep the distance of 1200 square meters between the traps (ETL for *H. armigera*is 8 to10 moths perday/trap), bird perches @ 50/ha, yellow sticky tarps for thrips and whitefly (10 traps/ha), mustard as a trap crop after 25 cabbage rows 15 days prior to sowing, six release of *T.chilonis*, *T. pretiosum* at 1,00,000/ha with weekly interval for controlling DBM and other lepidopteran pests. Need based application of neem based insecticides/neem oil 500 ppm @ 5 ml /L as an alternative to chemical insecticides at an interval of 15 days.Treatment of the seeds with *Trichoderma harzianum* based bioformulation like Org-Trichojal@ 5 g/L + CMC @ 0.02% for 1 hour followed by shade dry for 2 hour prior to sowing can reduce the soil borne disease like damping off.

YSPUHF, Solan Brief achievements:

Surveys, monitoring and biodiversity of fauna:

- A total of 25 coccinellid beetles viz. Coccinella septempunctata, Hippodamia varigieta, Adaliate traspilota, Cheilomenes sexmaculata, Propylealutiop ustulata, Chilocorus infernalis, Prisci brumus uropygialis, Platynaspis saundersii, Harmonia eucharis, Oenopea sauzetii, Oenopia conglobata, Oenopia kirbyi, Oenopia sexareata, Oenopia billieti, Halyzia sanscrita, Illeis sp nr confusa, Scymnus nubilus, Scymnus posticalis, Coelophora Bissell auta, Harmonia dimidiata, Harmonia eucharis, Megalocaria dilatata and Oenopia souzeti have been recorded from different agro-ecological zones of Himachal Pradesh.
- Among these, *Oenopia billieti*, and *Halyzia sanscrita* were the new additions to the previously reported list of coccinellids in Himachal Pradesh.
- A total of eight syrphid flies viz. *Episyrphus balteatus, Eupeodes frequens, Melanostoma univitatum, Betasyrphus serarius, Sphaerophoria indiana, Ischiodon scutellaris, Metasyrphus corollae* and *Scaeva pyrastri* were collected from different flowering plants in the state.
- *Chrysoperla zastrowi sillemi* was recorded preying on aphids and whiteflies on apple, peach, okra and cucumber at different locations of the state.
- *Dinocalpus coccinellae* and *Pediobius foveolatus* were collected as parasitoids of *Coccinella septempunctata* and *Megalocaria dilatata* at Nauni.
- *Diadegma semiclausum* and *Diadromus collaris* were recorded as larval and pupal parasitoids of *Plutella xylostella*, infesting cauliflower and cabbage.
- *Orius* sp. and *Anthocoris* sp. were collected from peaches infested with leaf curl aphid and thrips.
- A mirid predatory bug, *Nesidiocoris tenuis* was recorded preying on eggs and early instars of the leaf miner, *Tuta absoluta*.

b) Biological suppression

- Evaluation of *Trichogramma* spp. against apple fruit moth, *Argyresthia conjugella* was carried out in under laboratory conditions during 2017 to 2019. *Trichogramma embryophagum* resulted maximum parasitism (26.6%) followed by *T. chilonis* (17.7%), *T. pretiosum* (12.2%) and *T. achaeae* (11.1%) in after second year of study. Adult emergence from the parasitized host eggs was 90.9, 72.7, 87.5 and 85% for *T. achaeae*, *T. pretiosum*, *T. chilonis* and *T. embryophagum*, respectively, of which 50, 100, 56.3 and 65% per cent were the females.
- Bio-intensive management of *Helicoverpa armigera*, *Tuta absoluta* and sucking pests of tomato were evaluated during 2017-18 to 2019-20. The obtained yield in BIPM were for three years were 28.5t/ha, 22t/ha and 26.1t/ha and was at par with chemical treatment (31t/ha, 21. 3t/ha and 24.9t/ha).
- Biocontrol agents for the control of sucking pests in capsicum under polyhouse was evaluated from 2017-18 to 2019-20. Among biocontrol agents, *Chrysoperla zastrowi sillemi* (4 larvae / plant) resulted highest (80.6%) reduction in the aphid population which was on par with azadirachtin (2ml/L of 1500ppm) and imidacloprid (0.5ml/L)

(90.3%) in all the three years of study. Bioagents like *Lecanicillium lecanii* (5g/l of 10^8 conidia/ g) (73%) and azadirachtin (2ml/L of 1500ppm) (68%) were also on par with *Chrysoperla zastrowi sillemi* (4 larvae / plant), but could not match imidacloprid (0.5ml/L) in their efficacy against the pest. Other biocontrol agents resulted 54.3 to 58 per cent reduction in the aphid population over control, 10 days after the second spray/ release.

• Management of phytophagous mites on cucumber using *Blaptostethus pallescens* and *Neoseiulus longispinosus* under polyhouse condition was evaluated during 2020-21 and 2021-22. The highest yield (6.8kg/plant) was recorded in plants treated with spiromesifen (100g a.i./ha) followed by *N. longispinosus* (1:20), *N. longispinosus* (1:30), *B. pallescens* (20nymphs/m row) and *B. pallescens* (10nymphs/m row) as compared to untreated control (2 kg/plant)

c) Evaluation and bio efficacy of biopesticides:

- Efficacy of biocontrol agents were evaluated against leopard moth, *Zeuzera multistrigata* in apple during 2019-20 to 2021-22. Among different biocontrol agents, *Heterorhabditis bacteriophora* (5000IJs/gallery) was the most effective resulting (60.0-77.8%) mortality followed by *Steinernemma feltiae* (5000IJs/gallery) and azadirachtin (2ml/L of 1500ppm; 10ml/gallery).
- Efficacy of biocontrol formulations were evaluated for the management of *Fusarium* wilt/ root rot of pea through biological control agents. Seed treatment with *T. asperellum* formulation @ 10g/kg seed + soil application of *T. asperellum* formulation after mixing with FYM (10g/kg FYM) @40g/m² could be an ecofriendly option for the management of *Fusarium* wilt/ root rot of pea.

d) Brief about each large scale demonstration trials:

- Large scale demonstration for the management of apple root borer using *Metarhizium anisopliae* was conducted during 2017-18 to 2020-21. *Metarhizium anisopliae* (10⁸ conidia/g) applied @ 30g/ tree basin mixed in well rotten farm yard manure (FYM) and resulted 62.1 to 82.2% mortality of the apple root borer grubs, while chlorpyriphos applied @ 0.06% resulted mortality between 76.4-88.6% of apple root borer grubs during field trials.
- Demonstration on bio-intensive management of insect pests of tomato was carried during 2020-21 to 2021-22. The number of mines caused by *Tuta absoluta* were statistically on par with chemical plots and varied from 0.24 to0.37 mines/leaf. The fruit infestation in the two plots remained almost same throughout the season and varied from 2.33 to 3.67% in BIPM plots and 1.67 to 4.0% in chemical plots. The yield recorded in BIPM plots (31.3-33.8t/ha) was also statistically on par with that recorded in chemical treated plots (29.4-31.9.t/ha).

e) Technologies developed and adopted during the review period:

- Application of *Metarhizium anisopliae* (10⁸ conidia/g) @ 30g/ tree basin mixed in well rotten farm yard manure (FYM) was found effective for the management of apple root borer, *Dorysthenes hugelii*.
- Bio-intensive Integrated Pest Management (BIPM) module comprised of pheromone trap (PCI) along with marigold as trap crop, six releases of *Trichogramma achaeae*

@ 50000/ha, two sprays of azadirachtin 1500ppm @ 2ml/L and one spray of *Lecanicillium lecanii* (5g/L of 10^8 conidia/g) was found effective for the management of insect-pests of tomato.

- Two releases of *Chrysoperla zastrowi sillemi* (4 larvae / plant) was found effective for the management of sucking insect-pests of capsicum under poly house conditions.
- Release of predatory mite, *Neoseiulus longispinosus* @ (1:20) (predator: prey) was found effective for the management of phytophagous mite, *Tetranychus urticae* infesting cucumber under polyhouse conditions.
- Application of *Heterorhabditis bacteriophora* @ 5000 IJs/gallery was found most effective for the management of leopard moth, *Zeuzera multistrigata* infesting apple.
- Seed treatment with *Trichoderma asperellum* formulation @ 10g/kg seed+ soil application of *T. asperellum* formulation after mixing with FYM (10g/Kg FYM) @ 40g/m² provided significantly better control of *Fusarium* wilt of pea.

NRRI, Cuttack

Brief achievements:

a) Biological Suppression

• Potential of beetle, *Altica* sp. nr. *caerulea* (olivier) (Chrysomelidae: Galerucinae) for bio-supression of *Ludwigia adscendens* (Onagraceae) was tested.

b) Evaluation and bio efficacy of Biopesticides:

- Field evaluation of ICAR-NBAIR entomopathogenic strains against rice stem borer *Scirpophaga incertulas*, leaf folder, *Cnaphalocrocis medinalis*, brown planthopper (*Nilaparvata lugens*) was carried out.
- Field evaluation of ICAR-NBAIR strains against rice blast (*Magnaporthe oryzae*), brown spot (*Bipolaris oryzae*) and sheath blight (*Rhizoctonia solani*) was carried out.
- Three bioagents *viz.*, BS-5 (*Bacillus amyloliquefaciens*), BS-6 (*Bacillus subtilis*), BS-39 (*Bacillus cereus*) were identified effective against rice diseases.

c) Technologies developed and adopted during the review period:

- Insecticide induced hormesis for improved parasitoids
- Externally funded project by RKVY-Odisha entitled "Bio-Bank: Production and promotion of biocontrol agents and entrepreneurship development in aspirational districts of Odisha" was run in the institute.

KAU, Thrissur

a) Brief achievements

Surveys, monitoring and biodiversity of fauna

- A total of 1003 spiders' specimens were collected rice field during the period from 2017-2020 using pit fall traps and sweep nets. Two species of spiders *viz.*, *Pardosa pseudoannulata* and *P. irriensis* were collected consistently the former accounted for nearly 99% of the catch.
- Rugose spirallng whitefly on coconut was parasitized by the hymenoptean parasitoid, *Encarsia guadeloupe* and caused up to 90% natural parasitism.

- Surveyed for prevalence of cassava mealybug in > 150 locations at Thrissur and Palakkad districts from 2020-2022. Four mealybug species *viz.*, *Paracoccus marginatus* (36.72%), *Ferrisia virgata* (29.69%), *Phenacoccus manihoti* (28.90%) and *Pseudococcus jackbeardsleyi* (4.69%) infested the cassava plants simultaneously, forming a complex.
- Entomopathogenic fungi, *viz.*, *Lecanicillium araneicola, Simplicillium* sp., *Lecancillium psalliote* and *Purpureocillium lilacinum* were isolated from the mummified cadavers of mealybug.
- Theoutbreak reported was that of the giant African snail (*Achatina fulica*) was observed in Thrissur during 2017-18.
- Localised incidences of brown plant hopper infestation in rice were reported from Palghat district in late stages of the crop during 2017-18.
- Co-existence of bondar's nesting whitefly, *Paraleurodes bondari* with rugose whitefly was reported from coconut in Thrissur.
- Invasive pests like wax scale (*Ceroplastes cirripediformis*), hard scale (*C. ceriferus*), *Pseudococcus jackbeardsleyi* on glyicidia and *Rastrococcus iceryoides* on *Triumfetta rhomboidea* were reported from Thrissur. T
- Two species of mealybugs were noticed in coconut and one of them was identified as *Pseudococcus longispinus*.

Biological Suppression

• Both *spiromesifen* and release of *B. pallescens* @ 20 m/ row plots were effective in causing a consistent reduction in the mite population indicating the potential of the predator to be a safer alternative to synthetic acaricides in managing spider mites in cucumber under polyhouse conditions. *B. pallescens* released @ 20 /m row recorded the highest mean yield of 2.73 kg per plant, followed by acaricide treated plot at 2.70 kg/plant, both being on par with each other.

Evaluation and bio efficacy of biopesticides:

- Management of rice stem borer and leaf-folder using entomopathogens was evaluated. Among the bioagents evaluated, *Bacillus thuringiensis Beauveria bassiana* and, *H. indica* respectively, with 1.5, 1.83 and 3.17 dead hearts/m² were on par with the insecticide flubendiamide (2.67 dead hearts/m²)14 days after third spray and could be viable alternatives to flubendiamide for the management of stem borer in rice. The nematode *Steinernema carpocapse* as well as the EPF *Metarrhizum anisopliae* recorded mean values of 1.33 and 1.63 rolled leaves/m² 28 days after third spray and were on par with the insecticide (0.83 rolled leaves/m²).
- Evaluation of entomopathogenic fungi against pod bug *Riptortus pedestris* on cowpea was carried out and *Beauveria bassiana* registered significantly lower mean pod damage of 26.75% as against 36.33% in untreated control and was on par with the insecticide malathion, recording men pod damage of 27.14%.

Brief about each large scale demonstration trials:

• Large scale validation of BIPM in rice was carried out over an area of 840 ha in Palakkad and Thrissur districts during the period. Adoption of BIPM practices led to substantial reduction in infestation by major pests. The mean infestation by stem borer

and leaf folder in BIPM plots was 65 and 38% as compared to non BIPM plots. The rice bug population was 46% lower in BIPM plots. Similarly, incidence of bacterial leaf blight was mild in BIPM plots. The population of natural enemies was higher in BIPM plots. The yield obtained from IPM plots was 23% more than that obtained from non IPM plots. The cost of cultivation was 6% lower in the former. The increased yield as well as reduced cost resulted in an increase in profit by Rs.46705/ha. The cost benefit ratio, at 2.18 was almost double for IPM fields as compared to 1.40 for non IPM fields.

• The effectiveness of BIPM against brinjal shoot and fruit borer and mealybug was investigated in comparison with farmers' practice and untreated check. Fruit infestation by borer was lower in plots where insecticides were applied (31.51%), followed by BIPM plots (40.05 %). The economic yield was recorded as 57.0 and 42.73 q/ha, respectively for BIPM and chemical plots, which were on par. Significant reduction in yield was recorded in untreated plots, where the mean economic yield was 20.99 q/ha. Cumulative values for mealybug infestation was low in chemical treated plot (2.76 no.) as well as BIPM plots (8.77 no.), as compared to untreated control (20.60 no.). The cost: benefit ratio of BIPM module (1:1.96) was more than that of farmers' practice (1:1.25). The studies indicated that the BIPM package could be a viable alternative to chemical methods against insect pests in brinjal.

Technologies developed and adopted during the review period:

- A local isolate of the entomopthogenic fungus *Beauveria bassiana* from rice bug was isolated. The characterisation and evaluation for efficacy (lab, pot and field studies) against rice bug, *Leptocorisa* spp. was carried out. GenBank accession number was obtained for the isolate (MN062722). Aqueous and oil based formulations were developed and shelf life studies completed. Registration with CIBRC is in progress. The EPF is being distributed to farmers in Thrissur and Palakkad districts for application against rice bug.
- Entomopathogenic fungi, *viz.*, *Lecanicillium araneicola*, *Simplicillium* sp., *Purpueocillium lilacinum* and *Lecanicillium psalliote* were isolated from the mummified cadavers of mealybugs on cassava. Characterisation and bioefficacy studies of these isolates are in the progress.

IGKV, Raipur

Brief Achievements:

a) Surveys, monitoring and biodiversity of fauna

- Four species of Coccinellid beetles *viz. Henosepilachna vigintiotopunctata, Menochilus sexmaculatus, Coccinella transversalis* and *Illeiscincta* was recorded in different crops during the year 2019 – 20.
- Four species of reduviid bugs viz., *Rhynocoris fuscipes*, *Coranus* sp., *Scadra* sp. and *Acanthaspis siva* was recorded from Raipur during 2019 20.
- Production and mass rearing of biocontrol agents namely *viz.*, *Trichogramma*, *Bracon*, Reduviid bug, *Zygogramma* beetle and coccinellid beetle.

Biological Suppression

• Testing of two BIPM modules for management of *Helicoverpa armigera* on chickpea, during the year 2021 – 22

Brief about each large scale demonstration trials:

• Large scale testing of BIPM trial on paddy with control trail was conducted during the year (2020-21). Maximum grain yield was observed on BIPM felled by farmer's practice and contract.

Technologies developed and adopted during the review period:

- Tricho-cards production techniques.
- Braco-cards production techniques.
- Production of Coccinellid beetle and *Zygogramma* beetle.

UAHS, Shimoga

Brief achievements:

Evaluation and bio efficacy of biopesticides

- Two releases of *Encarsia guadeloupae* @ 600 adults per acre at 15 days interval found to be effective in management of Rugose Spiraling Whitefly in coconut.
- The consortia application of *P. lilacinum* + *P. fluorescens* + *T. harzianum* @ 1×10^8 Cfu/g- 10g each/plant multiplied in 3kg of FYM three times per year helps in maximum reduction of root knot nematode population in guava so it can be effectively used for the management of PPN in guava.
- Among the different botanicals tested neem seed karnal extract (NSKE) showed significant decrease in brinjal fruit borer compare to other treatments in organic pest management of brinjal.
- Biocontrol agents were evaluated against pod borers in red gram and found significantly lowest number of *H*. armigera larvae/plant in the treatment *Bacillus thuringiensis* (NBAIR BtG4 2%) @ 10ml/L.The efficacy of biopesticide *B*. *thuringiensis* was nearly equal to that of chemical insecticide (Chlorantraniliprole 18.5% SC@ 0.4 ml/L).

b) Brief about each large scale demonstration trials:

- Large scale demonstrations using EPN *Heterorhabditis indica* (NBAIR culture) and *Metarihizium anisopliae* was used for the management of root grubs in Arecanut. Lowest number of root grubs was recorded in the *H. indica* treated plants and was on par with the *M. anisopliae* treated plants and chemical treatment.
- Large scale demonstrations of *Trichoderma harzianum, Bacillus subtilis,* and *Pseudomonas fluorescens* for the management of soft rot of ginger was conducted in 50 acres of farmer fields of malnad and region of Karnataka. The consortia application of *T. harzianum, B. subtilis* and *P. fluorescens* @ 4 kg/ha each recorded lower disease incidence in ginger.

S.	Cent	Training programme	Organised/	Durati	Training outcome
No	res	and name of the officer	Conducted by	on	C
1.	Dr.Y	Agriculture Skill Council	Agriculture Skill	27-12-	Job roles and
	SRH	of India (ASCI) and	Council of India	2020	Master Trainers for
	U-	Dr. NBV Chalapathi Rao	(ASCI)	1 day	Training of Master
	HRS				Trainers
		ICAR sponsored winter	ICAR-NBAIR,	03-12-	Learnt techniques in
		school training –	Bengaluru	2019 to	mass multiplication
		Smt. B. Neeraja		23-12-	of biocontrol
				2019	agents, field
				21 days	evaluation and
					molecular
					techniques
		Executive development	ICAR – NAARM,	27-11-	Methods of
		programme on leadership	Hyderabad	2021 to	teaching skills,
		development		02-12-	writing projects on
				2021 (5	Research
				days)	
		ICAR –	ICAR – NAARM,	15-03-	Methods of
		NAARM Training	Hyderabad	2022 to	teaching skills,
		Programme (FDP) – Smt.		19-03-	writing projects on
		B. Neeraja		2022 (5	Research
		5		days)	
		ICAR-IISR, Kozhikode,	ICAR-IISR,	02-03-	Phytophthora from
		Kerala sponsored short	Kozhikode	2022 to	isolation to
		course on Phytophthora-		11-03-	functional
		Smt. B. Neeraja		2022	geneomics methods
				(10days	
)	
		AgMOOCS- Statistical	IIT- Kanpur	26-07-	Learnt about the
		techniques for	-	2022	various statistical
		Agriculturists - Smt. B.		6 weeks	techniques used in
		Neeraja			Research
2.		Coordinated Certificate	National	03	Training is imparted
	GBP	Course on the topic:	Agriculture Higher	months	every year for
	UA&	Mass Production of	Education	montifs	entrepreneurshin
	Т	Important Bio-control	$Project(N \Delta HFP)$		development
		Agents.	GRPUA&T		development
			Pantnagar		
			i untinugui		
		Innovative Approaches in	Center of Advance	02 days	Strengthen the

XXVI. Human resource development efforts

delivery of microbial antagonists for bio control of plant diseases.	faculty training (CAFT) GBPUA&T Pantnagar		knowledge scientist	of
Methods of Isolation, Quantification and Screening Techniques for Selection of Effective <i>Trichoderma</i> Isolates.	Center of Advance faculty training (CAFT) GBPUA&T Pantnagar	02 day	Strengthen knowledge scientist	the of
Mass Production of Bio- control agents and their Applications.	Center of Advance faculty training (CAFT) GBPUA & T Pantnagar	01 day	Strengthen knowledge scientist	the of
Advanced technology in delivery of microbial antagonists for bio control of plant diseases	Center of Advance faculty training (CAFT)GBPUA & T Pantnagar	03 day	Strengthen knowledge scientist	the of
Mass Production of <i>Trichoderma</i> and <i>Pseudomonas</i> .	Center of Advance faculty training (CAFT)GBPUA & T Pantnagar	03 day	Strengthen knowledge scientist	the of
IsolationandCharacterizationofTrichoderma:ABiocontrol Agent.		03 day	Strengthen knowledge scientist	the of
Massproduction,Formulations and QualityassessmentofTrichodermaspp.andPseudomonas fluorescens.	Center of Advance faculty training (CAFT) GBPUA&T Pantnagar	03 day	Strengthen knowledge scientist	the of
Methods of Screening of Biocontrol Agents against Fungal Pathogens	Center of Advance faculty training (CAFT) GBPUA & T Pantnagar	03 day	Strengthen knowledge scientist	the of
Mass Production of Biocontrol Agents.	Center of Advance faculty training	02 day	Strengthen knowledge	the of

		(CAFT)GBPUA & T Pantnagar		scientist
	Methods of Screening of Biocontrol Agents against Fungal Pathogens.	Center of Advance faculty training (CAFT)GBPUA & T Pantnagar	02 day	Strengthen the knowledge of scientist
	Participated in 70 th Annual Meeting & National Symposium on Plant Health Management: Embracing Eco- Sustainable Paradigm. Organized by Indian Phytopathological Society, New Delhi.	Assam Agriculture University, Jorhat.	03 day	Presented research paper
	Participated workshop/training on "Nematode problems of Horticultural Crops and their Management". Organized by ICAR-IARI, New Delhi and GBPUA&T, Pantnagar.	GBPUA&T, Pantnagar	01 day	Strengthen the knowledge in the field of Nematology
	ParticipatedinInternationalConferenceonBiologicalControl:ApproachesandApplications.ICAR-NBAIR,SocietyofBiologicalAdvancement.	Bengaluru, India.	03 day	Presented research paper and received award
	ParticipatedintheInternationalConferenceon"InnovativeHorticultureandValueChain Management",	GBPUA&T, Pantnagar	04 day	Presented research paper and received award
	Participated in 28 th AICRP Bio-control workshop.	AAU, Anand Gujarat	03day	Presented progress report of AICRP Biological control and formulated technical

				programme for next year.
	Attended workshop cum training programme on Suraksha Sankalp- Protect Farmers from Fall armyworm.	GBPUA&T, Pantnagar	01 day	Updated Knowledge
	Attended workshop on "Vrikshayurveda and Traditional Practices in Uttarakhand State: Present Status and Future Potential".	GBPUA&T, Pantnagar	02 day	Updated Knowledge
	AttendedNationalSeminaron "Agriculturegrowth in 21st century viv-a-visEcologicalandsocial protection".	GBPUA&T, Pantnagar	02 day	Updated Knowledge
	Participated in 29 th Annual National Workshop-Webinar of AICRP on Biological Control organized by ICAR-NBAIR.	GBPUA&T, Pantnagar	02 day	Presented progress report of AICRP Biological control and formulated technical programme for next year.
	Attended Webinar on "Paradigm Shift in Plant Disease Management" organized by ICAR- NBAIR.	GBPUA&T, Pantnagar	01 day	Updated Knowledge
	Participated in Review meeting-Webinar of AICRP on Biological Control organized by ICAR-NBAIR.	GBPUA&T, Pantnagar	01 day	Presented progress report of AICRP Biological control
	Attended Webinar on "International Online/Virtual Conference on Role of Basic and Applied Sciences in Human Well Being".	GBPUA&T, Pantnagar	02 day	Updated Knowledge

	Participated in Conference on E Control: Approa Green India. NBAIR, Soci Biological Advan	National Biological Iches for ICAR- ety of Icement.	Bengaluru, India.	03 day	Presented research paper and received award
	Participated i Annual Group Online Webinar o on Biological organized by NBAIR.	n 30 th o Meet of AICRP Control ICAR-	GBPUA&T, Pantnagar	01 day	Presented progress report of AICRP Biological control and formulated technical programme for next year.
	Attended Online on "New Parad Biological Cor Insect Pest and I ICAR-IISR. Luck	Webinar digms in f ntrol of Diseases". cnow.	GBPUA&T, Pantnagar	01 day	Updated Knowledge
	Attended Online on "Trichoder Superstar of Bio Industry". NRCIPM. New D	Webinar ma: A -pesticide ICAR- Delhi.	GBPUA&T, Pantnagar	01 day	Updated Knowledge
	Participated in Conference of International Co Plant P Retrospect and Indian Phytopat Society.	National n 8th nference, athology: Prospect. hological	SKNAU, Jobner,Jaipur	04 day	Updated Knowledge
	Attended Symposium Multidisciplinary Approaches fo Health Mar Indian Society Pathologist (PAU.	National on r Plant agement. of Plant INSOPP)	GBPUA&T, Pantnagar	02 day	Updated Knowledge
	Participated i Annual Group AICRP on E Control organi	n 31 th Meet of Biological zed by	Bengaluru	02 day	Presented progress report of AICRP Biological control and formulated

		-			
		ICAR-NBAIR.			technical
					programme for next
					year.
2	DAT	Tusining of Master	A ani avitavna 1 – Civili	2 dava	Vacualadas un
3.	PAU,	Training of Master	Agricultural Skill	3 days	Knowledge up
		Trainers/	Council of India	(Februa	gradation regarding
	HIA	Dr Sudhendu Sharma		ry 19-	good agricultural
	NA			21,	practices
				2018)	
		Plant Quarantine	NIPHM,	5 days	Knowledge up
		Procedures for Import and	Hyderabad	(Nove	gradation regarding
		Export/ Dr Sudhendu	(Virtual)	mber 9-	quarantine laws
		Sharma		13.	1
				2020)	
		On-Farm and Mass	ICAR-IIMR,	3 days	Knowledge up
		Production Protocols of	Hyderabad	(Octob	gradation regarding
		Bioagents and Microbial	(Virtual)	er 25-	production
		Agents for FAW		27.	protocols of
		Management for NWPZ/		2021)	bioagents
		Dr P.S. Shera		/	
4	SKU	On spot trainings on	Directorate of	02	Use of Biological
	AST	Biological Control on	Extension/ KVKS	02	Control
	Srina	fruit crops			Control
	onna oar	On spot trainings on	Directorate of	02	Use of Biological
	8***	Biological Control on	Extension/KVKS	02	Control agents
		vegetables			Control agents
		On spot trainings on	Directorate of	01	Use of Biological
		Di spot trainings on	Extension/KV/VS	01	Control
					Control
		On anot trainings on	Directorate of	01	Dolo of
		On spot trainings on	Directorate of	01	
		Biological Control on	Extension/KVKS		biopesticides
		codling moth		01	
		On spot trainings on	Directorate of	01	Biological Control
		BIPM	Extension/KVKS		
		Biological control an	Directorate of	10	Reduction of
		important component of	Extension/	days	pesticides
		IPM	pesticide dealers		
		Regular training on the	AICRP-BC	01	Skill training
		biological control			
		techniques			
		Installation and	AICRP-BC	02	Skill training
		demonstration of			
		pheromone baited traps			
		Demonstration of	AICRP-BC	02	Skill training
			1		-

		biopesticides against mites			
		Validation technologies	AICRP-BC	02	Skill training
		on apple			
5.	PJTS	Imparted training on	Govt. of Telangana	One	Trainees gain info.
	AU	"Biological Control as		day	On various aspects
		viable component of Pest			of Integrated Pest
		Management" to First &			management
		Second batch MAOs			
		Imparted training on	Govt. of Telangana	One	Trainees gain info.
		"Biological Control as		day	On various aspects
		viable component of Pest			of Integrated Pest
		Management" to First &			management
		Second batch MAOs			
		under Govt. Telangana			
		programme			
		Imparted training on	Govt. of Telangana	One	Trainees gain info.
		"Biological Control as		day	On various aspects
		viable component of Pest			of Integrated Pest
		Management" to First &			management
		Second batch MAOs			
		under Govt. Telangana			
		programme			
		Imparted training on	Govt. of Telangana	One	Trainees gain info.
		"Prtocols&		day	On various aspects
		Methodologies in Mass			of Integrated Pest
		Production of			management
		Metarhizium anisopliae"			
		on 20.5.2019 to all the			
		staff of State Bio Agent			
		Production Units/Labs			
		under Govt. Telangana			
		Imparted training on	Govt. of Telangana	One	Trainees gain info.
		"Biological Control as		day	On various aspects
		viable component of Pest			of Integrated Pest
		Management" to First &			management
		Second batch MAOs			
		under Govt. Telangana			
		programme, "Agro			
		Technologies for			
		Productive & Profitable			
		Agriculture in Telangana State"			
		Imparted training on	Govt. of Telangana	One	Trainees gain info.

"Strengthening of mass production of Bio Agents & Bio Pesticides" to all the staff of State Bio Agent Production Units/Labs under Govt. Telangana		day	On various aspects of Integrated Pest management
Imparted training on "Biological Control in IPM" to Trainees under GOI programmeorganized by CIPMC, Hyderabad on 11.12.2019	Govt. of India	One day	Trainees gain info. On various aspects of Integrated Pest management
Imparted training on "Strengthening of mass production of Bio Agents & Bio Pesticides" to all the staff of State Bio Agent Production Units/Labs under Govt. Telangana	Govt. of Telangana	One day	Trainees gain info. On various aspects of Integrated Pest management
Imparted training on "Urban Pest Management" to Industry participants on 16.12.2019 organized by NIPHM, Hyderabad	Govt. of India	One day	Trainees gain info. On various aspects of Integrated Pest management
Pest mngt. Basics and concepts to Agril Graduates	NGO.	One day	Trainees gain info. On various aspects of Integrated Pest management
"Use of bioagents and biopesticides in pest management" on 5 February, 2021 in the village	PJTSAU VA Team	One day	Trainees gain info. On various aspects of Integrated Pest management
Role of Biopesticides for pest management in various crops organized by Govt. of India on 26 November	Govt. of India	One day	Trainees gain info. On various aspects of Integrated Pest management
Role of Biological	Maize Res. Centre,	One	Trainees gain info.

		alternatives in	PJTSAU	day	On various aspects
		management of Maize		5	of Integrated Pest
		pests for farmers under			management
		TSP on 22 March. 2022			
		organized by maize			
		Research Centre			
		Rajendranagar			
		Role of Biological	Maize Res Centre	One	Trainees gain info
		alternatives in	PITS ALL	day	On various aspects
		management of Maize	IJISAO	uay	of Integrated Pest
		nanagement of Maize			management
		TSP on 25 December			management
		2021 organized by maize			
		2021 organized by maize			
		Research Centre,			
6	CAU	Rajendranagar.	CALL Designation and	00 4-	
0.	CAU,	Regional workshop on Discontrol of Investive	CAU-Pasignat and	08 to	Gained knowledge
	Pasig	Crop Dests and Utilization	ICAK-INDAIK,	U9 Eab	on farm level
	nat	crop Pests and Utilization	Bengaluru	Feb 2021	production,
		of insects as Food in		2021	conservation and
		North-eastern region of			application of
		India (Dr. Ajaykumara K.			biocontrol agents of
		M.)			crop pests
		6 th National Conference	SBA and ICAR-	March	Poster presentation
		on Biological Control	NBAIR, Bengaluru	3 to	on compatibility
		(Dr. Ajaykumara K. M.)		5th,	studies between
				2021.	<i>Metarhizium</i> sp and
					Chemical
				th	insecticides
		Annual Workshop cum	ICAR-NBAIR,	29 th	Finalized TP for
		Technical Interaction on	Bengaluru	June to	2022-23
		AICRP-Biocontrol		03 rd	Submitted insect
		(Dr. Ajaykumara K.M.)		July	fauna belongs to
				2022	different groups
					collected during
					field surveys
		Indian Phyotopathological	AAU Jorhat	24-25 th	Oral presentation
		Society's NEZ		Nov	on Evaluation of
		Symposium and National		2022	organic approaches
		Conference on Reframing			for the management
		Futuristic Plant Health			of Ginger rhizome
		Safeguards (Dr.			rot
		Ajaykumara K.M.)			
		7 th National Conference	SBA and ICAR-	March	Oral presentation

		on Biological Control	NBAIR, Bengaluru	3 to	on role of habitat
		(Dr. Ajaykumara K.M.)		5th,	manipulation for
				2021.	pest management in
					Tomato
7.	TNA	Mass Production of	TNAU	29.06.1	B.Sc. (Ag) Students
	U	biocontrol agents		7	PSMO College,
					Mallapura, Kerala
		Mass Production of	TNAU	10.07.1	B.Sc. (Ag) Students
		biocontrol agents		7	College of
					Horticulture,
					Bangalore
		Mass Production of	TNAU	12.10.1	10 Entrepreneurs
		biocontrol agents (paid		7	
		training)			
		Mass Production of	TNAU	21.11.1	Farmers, Mallapore
		biocontrol agents		7	
		Mass Production of	TNAU	08.12.1	B.Sc. (Ag) Students
		biocontrol agents		7	STISAT,
					Vedasanthur
		Mass Production of	TNAU	01.03.1	NPRC, Vamban
		biocontrol agents		8	
		Mass Production of	TNAU	02.03.1	PG students,
		biocontrol agents		8	AC&RI,
					Killikulam
		Mass Production of	TNAU	29.06.1	One year Diploma
		biocontrol agents		7	in DAESI
					programme ,
					ICAR- MYRDA
					KVK
		Mass Production of	TNAU	14.11.1	Department
		biocontrol agents		8	Officials
					Kerala state
					Department of
					Agriculture,
				10.11.1	Chawara
		Mass Production of	TNAU	19.11.1	Department
		biocontrol agents		8	Officials
					Kerala state
					Department of
					Agriculture
					Kotayam
		Mass Production of	TNAU	27.12.1	B.Sc. (Ag) Students
		biocontrol agents		8	APHC, Kalavai

tudents
tudents
sthetic
cience)
2Nos.
ersiy,
Agri.
Nos.,
of
(Seri)
_
ЯI,
n
(Ag.)
44Nos.
Agric
ollege,
U I
0 Nos.
tayam,
•
-
of
4 Nos.
ned to
versity,
•
40Nos.
KVK,

		Mass Production of	TNAU	07.01.2	Farmers - 35 Nos.
		biocontrol agents		0	KVK,
					Needamanagalam,
					Thiruvarur
		Mass Production of	TNAU	20.01.2	Students - 9 Nos.
		biocontrol agents		0	SNGS College,
					Pattambi, Kerala
		Mass Production of	TNAU	24.01.2	Students - 43 Nos.
		biocontrol agents		0	SRMV-IARD,
					PN Palayam
		Mass Production of	TNAU	30.01.2	Students - 29 Nos.
		biocontrol agents		0	Govt. Boys Hr.Sec.
		C .			School,
					Kavindapadi
		Mass Production of	TNAU	12.02.2	Farmers,
		biocontrol agents - Paid		0	Entrepreneurs - 18
		training –			Nos. 17+1 Venture
					Capital scheme
		Mass Production of	TNAU	12.02.2	Farmers - 24 Nos.
		biocontrol agents		0	ATMA, Wadakeva,
		C			Kozhikode
		Mass Production of	TNAU	26.02.2	Agricultural
		biocontrol agents		0	Officers -26 Nos.
		e			12+14 Department
					of Agriculture,
					TamilNadu
		Mass Production of bio-	TNAU	04.05.2	Officials from Dept.
		control agents		0	Biocontrol Unit,
		6			Salem -2Nos.
		Mass Production of bio-	TNAU	07.01.2	Entrepreneurs-
		control agents		1	40Nos. ICAR-
					KVK,MYRADA
					Erode (dt).
		Natural enemies of insect	TNAU	24.02.2	Students -15Nos.
		pests and biological		1	Institute of Forest
		control			Genetics and Tree
					Breeding.
					Coimbatore
		Mass Production of bio-	TNAU	26.02.2	Students -15Nos.
		control agents		1	Institute of Forest
					Genetics and Tree
					Breeding,
					Coimbatore
1	1 1		1	1	

		Mass Production of bio-	TNAU	02.03.2	B.Sc.(Horticulture)
		control agents		1	Students-29 Nos
				-	TNALL Coimbatore
		Mass Production of bio-	TNAU	03 03 2	B Sc (Horticulture)
		control agents	INAU	1	Students 31 Nos
		control agents		1	TNALL Compators
		Mass Draduation of his	TNIAII	05.02.2	D Tash (Die tash)
		Mass Floduction of bio-	INAU	05.05.2	D. Lecii. (Dio-lecii.)
		control agents		1	TNIALL Coinchean
				05.02.2	TNAU, Colmbatore
		Mass Production of	INAU	05.05.2	Farmers-2
		biocontrol agents - Paid		1	Enterpreneurs-3
		training			Venture Capital
					scheme
		Mass Production of bio-	TNAU	04.12.2	JAO's, TNAU
		control agents		1	24Nos., TNAU,
					Coimbatore
		Mass Production of bio-	TNAU	08.12.2	Entrepreneurs -
		control agents		1	38Nos. ICAR
					MYRADA KVK,
					Gopi
		Mass Production of bio-	TNAU	23.12.2	Teachers -3Nos
		control agents		1	Sakthi Institute of
					Engineering and
					Technology,
					Chinniyampalaym
		Mass Production of bio-	TNAU	18.02.2	Entrepreneurs –
		control agents - Paid		2	15Nos.
		training			
8.	OUA	M.Sc(Ag) students were	Dept. of		
	Т	also taken up their thesis	Entomology,OUAT		
		work on new invasive	.Dr.T.samal,		
		pests and other crop pest	Dr.J.Padhi,		
		management with the	Dr.S.M.A Mandal,		
		bioagents	Dr.B.Patro (one		
			student each) *		
		Trainings were imparted	Bio control	8 TH	Able to know the
		to the 4 th year B.sc	Laboratory of	Semest	rearing tech.of
		students under	Entomology	er of	beneficial insects
		"Experimental learning	Department,OUAT	each	and Honeybee
		programme" (ELP) for	,Bhubaneswar	Year(2	cultivation.
		productions and Handling	Dr.M.k.Tripathy,	017-18	
		of bioagents and	Dr.T.Samal and	to	
		Honeybee rearing	Dr.(Mrs)P.Behera	2021-	

		Techniques to 84 number	2017-18: 11	22	
		of students during the last	students.		
		five years.	2018-19: 11		
			students.		
			2019-20: 11		
			students.		
			2020-21: 27		
			students.		
			2021-22: 24		
			students.		
		Biological pest control in	KVK,ICAR-	1	Able to know the
		field crops and vegetable	CIFA,BHUBANES	(23/11/	beneficial effect of
		crops	WAR	2022)	bioagents over
		DR.T.Samal			chemical pesticides
					and how to use
					them
		Pest management in	RRS,Nayagarh	1	Use and beneficial
		sugarcane crop			effect of bioagents
		Dr.T.Samal			in sugarcane
		*Seasonal incidence and			
		bio intensive Management			
		of fall armyworm			
		Spodopterafrugiperda(J.E.			
		Smith)(Lepidoptera:Noctu			
		idae) on Maize. 2021			
		.Dr.T.Samal (Guide)			
		*Diversity and bio-			
		ecology of			
		trichogrammatids in			
		coastal Odisha			
		2022Dr.S.M.A. Mandal			
		(Guide)			
		*Effect of food			
		supplements on the			
		biological attributes and			
		parasitisation potential of			
		Goniozusnephantidismue			
		seback.			
9.	ANG	Trichocard production	AICRP BC,	1	Learned skill
	RAU	training at AICRP BC,	ANGRAU		
		RARS, Anakapalle on			
		15.3.2018			
	Trichocard production training at AICRP BC, RARS, Anakapalle on 2.72018	AICRP BC, ANGRAU	1	Learned skill	
--	--	--	--------	--	
	One day Fall army worm workshop ADA's, Ao's, AEO's, Progressive farmers and Dealers of Vizianagaram district, Andhra Pradesh on 6.11.2018 at Zillaparishad Vizinagaram	Special Commissioner of Agriculture, Andhra Pradesh	1 day	Alerted 600 No. District extension staff of Dept. of agriculture, Dealers and farmers on new invasive pest, fall army worm in maize as resource person	
	District level one day orientation programmes at Srikakulam and vizianagaram on 22.04.2019 and 23.04.2019	Principal secretary (Agri & coop) and Special Commissioner of Agriculture, Andhra Pradesh	2 days	Advisory to 250 no. Department of agriculture and farmers on identification and management of new invasive pest, Fall armyworm, <i>Spodoptera</i> <i>frugiperda</i> .	
	Awareness programme on maize fall armyworm at Cheepurupalli, Vizianagaram district on 17.08.2018	Department of Agriculture, Vizianagaram district	1 day	Advisory to 150 no. Agriculture Market Committee level Farmers, Mandal parishad extension officers, Agricultural officers as resource person	
	Awareness programme on maize fall armyworm at Pusapatirega, Vizianagaram district on 18.08.2018	Department of Agriculture, Vizianagramdiviso n, Vizianagaram district	1 day	Advisory to 120 no. Agriculture Market Committee level Farmers, Mandal parishad extension officers, Agricultural officers as resource person	
	Awareness programme on	Department of	1 day	Advisory to 100 no.	

ma	nize fall armyworm at	Agriculture,			maize farmers
Ko	othavalasa,	Kothavalsa			
Vi	zianagaram district on	division,			
16	.11.2018	Vizianagaram			
		district			
Av	vareness programme on	Department	of	1 day	Educated 35
ma	nize fall armyworm at	Agriculture,			progressive farmers
Ch	eepurupalli,	Cheepurupalli			
Viz	zianagaram district on	division,			
22.	.12.2018	Vizianagaram			
		district			
Av	vareness on production	AICRP	BC,	1	Gained knowledge
of	Isaria fumosorosea at	ANGRAU			by Field staff (8
far	mers level on				No) of NGO
29.	.11.2019				Reddy's mitra
					foundation,
					srikakulam
Av	vareness programme on	AICRP	BC,	1 day	Team of ICAR_
ma	anagement of Coconut	ANGRAU	with		NBAIR Scientists
rug	gose spiraling whitefly	ICAR-NBAIR	,		inaugurated
at	Venkataraopeta village,	Bengaluru			entomopathogenic
Ra	nasthalammandal,				fungi, Isaria
Sri	ikakulam district on				fumosorosea
6.1	.2020				(NBAIR- pfu 5)
					production centre
					for farmer level
					production.
					Motivated
					Department of
					Horticulture staff -
					12 No. ; 100
					No.coconut farmers
					and 20 No. field
					staff of Reddy's
					mitra foundation
					of Srikakulam
					district Supplied
					mother cultures (10
					kg) and
					formulation of
					Isaria fumosorosea
					fungus (50kg).
					Demonstrations

				conducted in 25
				acres
	Farmers awareness	AICRP BC ,	1	Motivated 220
	programme on	ANGRAU, CABI		maize farmers and
	management of maize fall	& ICAR-NBAIR,		12 department of
	armyworm under at	Bengaluru		agriculture staff
	Pusapatirega,			Distributed
	Vizianagaram district on			biocontrol agents, to
	07.01.2020			Department of
				Agriculture and
				maize farmers.
	Hands on training on	AICRP BC,	8 days	Motivated 200 No.
	farmers level production	ANGRAU &		coconut farmers of
	of Entomopathogenic	ICAR-NBAIR,		Srikakulam,
	fungi, Isaria fumosorosea	Bengaluru		Vizianagram,
	NBAIR Pfu5 in at RARS,			Visakhapatnam
	Anakapalle			Godavari and
	(Visakhapatnam district),			Nellore districts ;
	Koyyam village			Field staff of Dr.
	(Etcherlamandal,			Reddysmitra
	Srikakulam district) and			foundation and
	Venkataraopeta village			Department of
	(Ranasthalammandal,			Horticulture
	Srikakulam district) on			officials of
	5th, 6th and 7th February			Visakhapatnam,
	2020 and 12thmarch, 2020			Vizianagaramand
				Srikakulam districts
	Hands on training on	AICRP BC,	2	9 No. coconut
	farmers level production	ANGRAU		farmers of
	of Entomopathogenic			Vizianagaram
	fungi, Isaria fumosorosea			district learned skill
	NBAIR Pfu5 in at RARS,			
	Anakapalle			
	(Visakhapatnam district)			
	on 18.2.2020, 17.3.2020			
	Hands on training on	AICRP BC,	2	Two Scientists from
	farmers level production	ANGRAU		ARS,
	of Entomopathogenic			Amadalavalasa,
	fungi, Isaria fumosorosea			BCT KVK,
	NBAIR Pfu5 in at RARS,			Haripuram Learned
	Anakapalle			skill
	(Visakhapatnam district)			
	on 7.3.2020			

	II D	TZ 11 1 1	1	T 1 1 111
	Honey Bees rearing to	Korraikothavalasa	1	Learned skill
	tribal women on			
	17.12.2020			
	Hands on training on mass	AICRP BC,	3 days	Learned skills by 3
	production of	ANGRAU at		field staff of NGO-
	Entomopathogenic fungi,	RARS, Anakaplle		Vikasa,
	Isaria fumosorosea			Visakhapatnam
	NBAIR Pfu5 26.7.2021			district
	Mass production of	AICRP BC,	8 days	Training to field
	biocontrol agent,	ANGRAU at		staff (3no.) of NGO,
	Trichogramma spp. and	RARS, Anakaplle		Vikasa operating in
	Biopesticides	-		plan and tribal areas
	(Metarhizium anisopliae			of Visakhapatnam
	NBAIR Ma4, Ma35,			district promoting
	Beauveria bassiana			organic cultivation
	NBAIR Bb45. Isaria			6
	fumosorosea NBAIR Pfu5)			
	in July august October			
	and December 2021			
	Hands on training on	AICRP BC	7 days	Motivated 13
	mass production of	ANGRAII at	7 ddys	farmers of
	Entomonathogenic fungi	RARS Anakanlle		Visakhanatnam
	Isaria fumosorosea	in into, i maxapite		district
	NBAIR Pfu5 in feb			district
	april 2022			
	Hands on training for		1 day	$\mathbf{B} \mathbf{S}_{\mathbf{C}}(\mathbf{A}_{\mathbf{G}})$ students
	mass production of EDE	ANGRAII of	1 uay	Agricultural
	Matarhizium anisopliae as	ANORAO, at PAPS Anakanalla		College Naira
	a part of experiential	КАКЗ, Апакаранс		reduced
	a part of experiential			produced
	final war D Sa (Aa)			functional symplical
	linal year B.Sc (Ag)			fungi and supplied
	students 25 No at			for demonstrations
	Agricultural College,			
	Naira on 16.11.2019.			
	Skill training on mass	RARS, Anakapalle	7 days	Motivated 15 rural
	production Biocontrol			youth
	agents and biopesticides			
	to 15 rural youth RARS,			
	Anakapalle for one week			
	(13.2.2020 - 20.2 .2020).			
	Online training on	NAARM,	9 days	Gained Knowledge
	"Analysis of Experimental	Hyderabad		
	data using SAS "			

ained Knowledge
and Knowledge
ained Knowledge
ained Knowledge
ained Knowledge
enefited by SMS
enefited by SMS
-
vientist

Pest and Disease	EEI, AAU, Jorhat	08.09.2	Agricultural
Management in Post		017	Inspector,
Flood Situation			Meghalaya
By Dr.D.K.Saikia			
CAFT training on	Department of Soil	21.11.2	Scientist
"Culturing techniques for	Science, AAU,	017	
biofertilizers and	Jorhat		
biopesticides" By			
Dr.D.K.Saikia			
R. N. Borkakati			
CAFT training on	Department of Soil	21.02.2	Scientist
"Culturing techniques for	Science, AAU,	018	
biofertilizers and	Jorhat		
biopesticides" By			
Dr.D.K.Saikia			
R. N. Borkakati			
CAFT training on "Mass	Department of Soil	1	Benefited by
multipliaction techniques	Science, AAU,	day,	scientist
of important biopesticide	Jorhat	27/11/2	
agents"		018	
By Dr.D.K.Saikia			
R. N. Borkakati			
Model Training Course	DoEE, AAU,	1 day,	Benefited by
on IFS for Sustainable	Jorhat-13	26.11.2	scientist
Agriculture By		018	
Dr.D.K.Saikia			
R. N. Borkakati			
CAFT training on "BIPM	Department of Soil	1 day,	Benefited by
for Pest management in	Science, AAU,	19.02.2	scientist
organic farming" By	Jorhat	019	
Dr.D.K.Saikia			
R. N. Borkakati			
CAFT training on "Mass	Department of Soil	1 day,	Benefited by
multiplication of	Science, AAU,	20.02.2	scientist
biocontrol agents	Jorhat	019	
specially			
Trichogrammatids" By			
Dr.D.K.Saikia			
R. N. Borkakati			
CAFT training on	Department of Soil	1 day,	Benefited by
"Exploitation of	Science, AAU,	18.09.2	Scientist
Beneficial Microbes in	Jorhat	019	
Organic Agriculture" By			

		Dr.D.K.Saikia			
		R. N. Borkakati			
		CAFT training on	Department of Soil	1 dav.	Benefited by
		"Exploitation of	Science. AAU.	23.09.2	Scientist
		Beneficial Microbes in	Jorhat	019	
		Organic Agriculture" By			
		Dr.D.K.Saikia			
		R. N. Borkakati			
		CAFT training on	Department of Soil	1 dav	Benefited by
		"Organic Agriculture and	Science. AAU.	06.03.2	Scientist
		Soil Health" By	Jorhat	020	
		Dr D K Saikia		020	
		R N Borkakati			
		Training programme to	FTC Naltali	1 dav	ADO and Sr ADO
		extension functioneries	Nagaon	11022	
		By R. N. Borkakati	1 uguon	021	
		Safe handling of	NAHEP sponsored	1 day	Faculty Ph D and
		Bioagents and	training Dept of	12.02.2	M Sc Students
		bionesticides	Entomology	022	
		By R N Borkakati	Lintoniology	022	
11	мр	1 Soft skill development			
11.	KV	programmes for			
		personality development			
		were organized for staff			
		members working in the			
		project			
		2. The staff of the project			
		conducted hands on			
		training "Experiential			
		Learning Programme"			
		on "Mass Production of			
		Bioagents and			
		Biopesticides" for last			
		semester of UG and total			
		177 students in last 5			
		vears (2017-2022) have			
		been trained in production			
		and marketing of			
		biopesticides so that they			
		became confident in			
		entrepreneurship develop			
		ment programme			
		in biopesticides			

		production after the			
		graduation.			
12	SKI	Thirty nine lectures were			
12.	AST-	delivered to the officers of			
	Iom	the line department			
	Jaili	formare postiaida daalare			
	mu	taimers, pesticide dealers,			
		etc. under various training			
		programs to make them			
		aware of the benefits and			
		use of various biocontrol			
		agents.			
10	17 4 1 1			1 1	T
13.	KAU,	Trainers training on Mass	ICAR - National	l day	Learnt toidentify
	Vella	Production and Release	Bureau of		the mealy bs
	yani	techniques of Anagyrus	Agricultural Insect		species and their
		lopezii for the Classical	resources,		parasitoids
		Biological Control of	Bengaluru		Familirised with the
		Cassava Mealybug in			mass production
		India			and release of
					A.lopezi
		Hands on training on	National Coir	21 days	Acquired hands on
		Microbial identification –	Research and	15.2.20	experience on use
		Biochemical and	Management	18 to	of technologies in
		Genotype and Mass	Institute	7.3.201	the microbial
		Spectrometric Methods	Trivandrum	8	research field like
					MALDITOF,
					VitexMs, Rep PCR
					etc
14.	NRR	Entrepreneurship	ICAR-NRRI	5 days	Created awareness
	Ι	Development Program on			for
		'Mass production of			Entrepreneurship
		bioagents for insect pest			Development
		management in rice'			Program on 'Mass
					production of
		As Resource Person:			bioagents for insect
		Annamalai. M, Scientist,			pest management in
		ICAR-NRRI			rice'
15.	KAU	Dr. Smitha M. S.	NBAIR, Bengaluru	10 days	Familiarization
	,	Nanotechnological		$(15^{\text{th}} \text{ to})$	with
	Thris	approaches in pest and		24 th	Nanotechnology
	sur	disease management		Nov	based 1 approaches
				2017)	in pest and disease
					management

					Nanotechnological
					approaches in pest
					and disease
					management
16.	IGK	Mother culture of	College of	2021 -	Established
	V	Corcyra and Trichocards	Agriculture,	22	Biocontrol lab
		provided at IGKV centre	Ambikapur,		
		Mother culture of Corcyra	College of	2021 -	Established
		and Trichocards provided	Agriculture,	22	Biocontrol lab
			Kanker		
		Mother culture of	College of	2019 -	Established
		Corcyra and Trichocards	Agriculture	20	Biocontrol lab
		provided	Gariyaband		

XXVII. Publications

Sl.No	Centres	Scient	tific	a	rticles	Bo	Book	Papers	Tot
		published in		n jo	urnals	oks	chapte	presented in	al
		-	(No)	-			rs	- symposia,	
		>8	>6	<6	No	-		seminars, etc. /	
		NA	NAA	NA	NA			Published in	
		AS	S	AS	AS			local languages/	
		Rati	Ratin	Rati	Rati			Technical	
		ng	g	ng	ng			bulletins/Folder	
		8	8	8	8			setc	
1.	CPCRI	1	11	6	1	-	-	59	78
2.	NCIPM	-	-	1	-	-	-	6	7
3.	UBKV	-	-	6	2	-	-	9	17
4.	PAU	2	17	31	-	-	1	39	90
5.	SKUAST,	4	4	1	-			19	28
	Srinagar								
6.	DrYSRHU	2	2	8	6	-	-	40	58
7.	GBPUAT	2	2	17	14	2	1	86	124
8.	IIMR	-	-	-	-	-	-	3	3
9.	IIRR			3	3			4	10
10.	KAU,			9	4			21	34
	Vellayani								
11.	KAU,				1			2	3
	Kumarako								
	m								
12.	PJTSAU	1		6	3			7	17
13.	CAU				1			8	9
14.	CISH				1				1
15.	MPKV	-	-	7	21	-	-	15	43
16.	MPUAT	-	3	7	4			19	33
17.	TNAU		2	21	11			14	49
18.	OUAT				3			7	10
19.	ANGRAU	1		4	5	7	1	22	40
20.	AAU,			10	15			52	73
	Anand								
21.	DrYSRHU	2	1	8	8	İ		16	35
22.	AAU,	1	2	9	19			53	84
	Jorhat								

XXVIII. Budget

Plan Budget (2017-2022)

5 years budget from 2017-18 to 2021-22

Year	Pay	capital	TA	RC	TSP	Total
2017-18	407.00	0.00	7.81	37.43	8.50	462.74
2018-19	213.55	0.00	70.90	334.85	62.00	683.30
2019-20	224.38	0.00	67.65	336.15	50.00	679.18
2020-21	204.70	0.00	14.23	380.77	40.00	640.80
2021-22	217.08	6.10	25.33	386.67	43.00	678.18
	1266.71	6.10	185.92	1475.87	203.50	3138.10

Centre wise budget from 2017-18 to 2021-22

Sl. No.	Name of the	Pay	Capital	ТА	RC	TSP	Total
	Centre						
1	AAU, Anand	140.64		11.86	90.71	21.81	265.02
2	AAU, Jorhat	135.90	6.10	11.74	69.96	26.60	250.30
3	RARS Anakapalle	66.47		10.72	69.88	20.07	167.14
4	PJSTAU,	105.20		5.32	25.44	0.00	135.96
	Telangana						
5	DR.YSPUH & F,	145.82		6.29	37.68	4.49	194.28
	Solan						
6	GPUAT, Pantnagar	63.89		8.13	57.24	25.17	154.43
7	KAU, Thrissur	82.29		6.79	66.28	5.00	160.36
8	MPKV, Pune	119.03		10.14	72.74	0.00	201.91
9	PAU, Ludhiana	173.44		9.24	65.36	0.00	248.04
10	SKUAT, Srinagar	136.61		9.66	44.60	22.76	213.63
11	TNAU, Coimbatore	103.52		8.41	51.78	3.17	166.88
12	MPUAT, Udaipur	0.22		4.99	7.00	16.21	28.42
13	OUAT,	0.75		4.13	9.95	3.23	18.06
	Bhubaneswar						
14	CAU, Pasighat	0.30		3.60	28.25	21.60	53.75
15	UAS, Raichur	0.00		7.16	37.22	24.51	68.89
16	ICAR- CPCRI,	0.00		2.77	11.74	6.00	20.51
	KAYANKULAM						
17	ICAR-CTRI,	0.00		1.75	3.50	0.00	5.25
	Rajahmundry						
18	ICAR- IIHR	0.00		2.77	11.00	5.00	18.77
19	ICAR-P.C.CELL,	0.00		0.00	612.57	0.00	550.32
	B'LORE						
20	ICAR-CISH,	0.00		3.54	9.33	5.20	18.07

	Lucknow						
21	ICAR-IIRR,	0.00		2.17	8.38	3.00	13.55
	Hyderabad						
22	ICAR-IIMR,	0.00		2.27	7.23	3.00	12.50
	Hyderabad						
23	ICAR-IIVR,	0.00		2.27	11.88	1.85	16.00
	Varanasi						
24	ICAR-NCIPM,	0.00		2.77	10.54	0.50	13.81
	New Delhi						
25	IGKV, Raipur	0.00		2.27	10.41	14.98	27.66
26	KAU, Kumarakom	0.00		2.84	16.08	23.67	42.59
27	KAU, Vellayani	0.00		2.90	15.15	7.50	25.55
28	Dr.YSRH,	0.00		2.30	13.72	10.40	26.42
	Ambajipeta						
29	UBKV,Pundibari	0.00		3.27	13.10	3.66	20.03
	Total	1274.08	6.10	152.07	1488.72	279.38	3138.10

XXIX. SWOT Analysis of AICRP on Biological Control

Centres	Strengths	Weaknesses	Opportunities	Threats
AAU, Anand	Well-functioning	Very less	Research on climate	Heavy reliance
	facility for the	supporting	resilient improved	of farming
	research and	staff, No	strains of bioagents	community on
	production of	grants to	and bioinoculants,	chemical
	bioagents and	procure	Networking with	pesticides/spurio
	biopesticides,	equipments/	organizations such as	us biological
	Competent	instruments	CABI-South Asia,	products laced
	scientific &		Better cotton, Pidilite	with chemical
	technical staff		industries, sugar	insecticides in
			industries, private	vegetables
			industries viz., Nico	cultivation
			orgo manures, Anand	
			to propagate the	
			biocontrol	
			technologies,	
			Development of	
			microbial inoculants	
			with multifarious	
			attributes, effective at	
			both biotic and	
			abiotic stresses	

Iaboratory, qualifiedproductionorganichub, biodiversitymolecularqualifiedunit,lessbiodiversityhotspotfacilitiesfor characterizationexposed biocontrolstaff,lack ofexploration of variousofnativeScientists, excellentequipmentsorganisms for pestbecomingaArgricultureDepartmentandspuriousbiologicalDepartmentandKVKsbiodernand spuriousQualifiedLackofScope for Isolation ofHost SpecificityQualifiedequipments, equipments,of entomopathogenic agriculturalagents, DirectR & D System, Qualifiedfacility, lackbiopesticides, Scopeagents, DirectFunctional AICRP onSugarcane, facility, lackfor utilization of biopesticides, ScopeBiocontrolANGRAUGramin Krishi Mausam SewaProject, BiofertilizermodernBiocontrolin agricultural, modernGBPUAT1.G.B.Pant1.Scientific1.Lack of	AAU. Jorhat	Well functioned	Small	Assam is one of the	Lack of
qualified internationally exposed biocontrolunit, uspporting staff, lack of modern equipmentsbiodiversity nodern exploration of various micro and macro organisms for pest managementfacilities for characterization of micro and macro organisms for pest managementANGRAUWell established R & D System, Qualified Scientific staff, Insufficient Marvest Marvest Technology and Gramin Krishi Mausam SewaProject, BiofertilizerLack of scientific staff, scientific scien	- ,	laboratory.	production	organic hub.	molecular
Internationally exposed biocontrolsupporting staff, lack of modern equipmentsand scope for exploration of various micro and macro organisms for pest managementcharacterization of native bioagentsScientists, excellent linkage with Agriculture Department and KVKssupporting staff, lack of equipmentsand scope for exploration of various micro and macro organisms for pest managementbiological products availabilityANGRAUWell established R & D System, Qualified Scientific staff, Insufficient functional AICRPLack of modern lab native virulent strains of entomopathogenic fungi and transport for utilization of harvest Technology and Gramin Krishi Mausam SewaProject, BiofertilizerLack of scientific for utilization of for utilization of production UnitsScientific technologies for organic cultivation in export oriented cropsBiocontrol agents on non targetGBPUAT1.G.B.Pant1.Scientific1.Lack of techniquesInsufficient fungi agricultural, for utilization of modernBiocontrol agents on non targetScientific for utilization of modern agricultural, Horticultural crops in andhra Pradesh, Development ofBiofertilizer Production Units1.Scientific techniques1.Lack of techniquesBiofertilizer Production Units1.Scientific techniques1.Lack of techniquesBiofertilizer Production Units1.Scientific techniques1.Lack of techniques <th></th> <th>qualified</th> <th>unit, less</th> <th>biodiversity hotspot</th> <th>facilities for</th>		qualified	unit, less	biodiversity hotspot	facilities for
exposed biocontrolstaff, lack of modernexploration of various micro and macro bioagentsScientists, excellentequipmentsorganisms for pest managementbecoming a threat for their original identity and spurious biological products availabilityANGRAUWell established QualifiedLack of equipments, modernScope for Isolation of functional AICRP functional AICRPScope for Isolation of threat staff, functional AICRP functional AICRP functional AICRPScope for Isolation of threat staff, functional AICRP functional AICRPScope for Isolation of tansport development of biopesticides, for utilization of targetHost Specificity agents, of entomopathogenic agents, of for utilization of targetANGRAUWell established LackLackScope for Isolation of functional AICRP transport development of biopesticides, for utilization of targetHost Specificity agents, of agents, of targetAICRP on Post harvest modernfor agents transportBiocontrol agricultural, Horticultural crops in agricultural, Horticultural crops in andhra Pradesh, SewaProject, Biofertilizer Production UnitsBiocontrol agentsGBPUAT1.G.B.Pant1.Scientific1.I.J.Scientific1.Lack of		internationally	supporting	and scope for	characterization
AngRAUWell established R & D System, QualifiedLackof equipments, modern equipmentsstate managementbioagents becoming a threat for their original identity and spurious biological products availabilityANGRAUWell established QualifiedLackof equipments, of equipments, of equipments, of equipments, of equipments, of equipment, intak equipment, intak equipment, intak equipment, intak equipment, intak equipment, intak i		exposed biocontrol	staff, lack of	exploration of various	of native
Scientists, excellent linkage with State Agriculture Department and KVKsequipmentsorganisms for pest managementbecoming a threat for their original identity and spurious biological products availabilityANGRAUWell established R & D System, Qualified Scientific staff, Functional AICRP on Sugarcane, AICRP on Post harvest modernLack of scientific staff, facility, lack biopesticides, Scope for utilization of thanvest modernHost Specificity of Biocontrol agents on non techniquesAICRP on Post harvest modernof exposure to for utilization of modern agricultural, Horticultural, crops in andhra Pradesh, SewaProject, Biofertilizer Production Units1.C.B. Pant1.Scientific1.Lack of scientificBPUAT1.G.B.Pant1.Scientific1.Lack of scientific1.Lack of scientificBrunctional AICRP facility, lackI.Scope for utilization of for utilization of agents on non agricultural, modernHost Specificity agents on non targetBiofertilizer production UnitsDevelopment of rechnologiesI.LackofBrunt in rechnologies1.Scientific1.Lackof			modern	micro and macro	bioagents
excellentlinkage withmanagementthreatfortheir originalAgriculture DepartmentandspuriousDepartmentandspuriousBiological productsproductsANGRAUWellestablished qualifiedLackofScientificstaff, staff, ScientificLackofScientificstaff, functional AICRP onSugarcane, facility, lackScope for Isolation of native virulent strains of biopesticides, ScopeHost Specificity of Biocontrol agents, Direct riskAICRP on harvest modernof exposure to of exposure to for utilization of agericultural, Horticultural crops in andhra SewaProject, Biofertilizer Production UnitsBiocontrol agents organic cultivation in export oriented cropsGBPUAT1.G.B. Pant1.Scientific1.Bio control1.Scientific1.LackLink1.LackScientific1.LackLinkLack1.Scientific1.Lack		Scientists,	equipments	organisms for pest	becoming a
with Agriculture Department and KVKsState Agriculture Department and KVKsoriginal identity and spurious biological products availabilityANGRAUWell established QualifiedLack equipments, equipments, of equipments, of equipments, of equipments, of equipment and functional AICRP on Scientific staff, Insufficient functional AICRP on Sugarcane, facility, lackLack of scientific functional AICRP of equipments, facility, lack biopesticides, for utilization agricultural, Horticultural crops in andhra Pradesh, SewaProject, Biofertilizer Production UnitsHarks itechniques agricultural, Horticultural crops in andhra Pradesh, SewaProject, BiofertilizerI.G.B. Pant1.Scientific itechniques1.Lack itechniquesGBPUAT1.G.B. Pant1.Scientific itechnicitic1.Biocontrol agents1.Lackof		excellent linkage		management	threat for their
Agriculture Department and KVKsand spurious biological products availabilityANGRAUWell established R & D System, Qualified Scientific staff, Functional AICRP on Sugarcane, AICRP on Post MavsamLack of equipments, facility, lack biopesticides, Scope for utilization of agents on non agents on non targetAICRP on Post harvest modernBiocontrol in techniquesBiocontrol in agricultural, Horticultural crops in Biofertilizer Production UnitsBiocontrol in agricultural, Horticultural cropsGBPUAT1.G.B.Pant1.Scientific1.Lack of		with State			original identity
Departmentand KVKsbiological products availabilityANGRAUWell established R & D System, QualifiedLack of modern lab native virulent strains of entomopathogenic for entomopathogenic development of for utilization of harvestHost Specificity of Biocontrol agents, Direct facility, lack biopesticides, Scope for utilization of harvestAICRP on Post harvestof exposure to modernfor utilization of biopesticides, Scope for utilization of harvestTechnology and Gramin Krishi Mausam SewaProject, BiofertilizerCentific Technologies for organic cultivation in export oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lack1.Lack1.LackAlckMausam BiofertilizerJackJackBiofertilizer Production UnitsJackJackJackABPUAT1.G.B.Pant1.ScientificLack1.Lack1.LackJackLack1.Lack1.LackJack		Agriculture			and spurious
KVKsproducts availabilityANGRAUWell establishedLack ofScope for Isolation ofHost SpecificityR & D System, Qualifiedmodern lab equipments,native virulent strains ofofBiocontrolQualifiedequipments, ofof entomopathogenic development ofagents, DirectScientific staff, Functional AICRPInsufficientfungiand riskofAICRP on Post harvestfacility, lack of exposure to modernbiopesticides, Scope agents on non targetagents on non targetGramin Biofertilizer Production UnitsmodernBiocontrol or ganic cultivation in export oriented cropsI.LackGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.LackofScientific1.Lackof		Department and			biological
ANGRAUWell established R & D System, Qualified Functional AICRP on Sugarcane, AICRP on Post RawLack of Insufficient facility, lack Biocontrol development of for utilization of agents, control biocontrol in agents on non targetWell established Biocontrol agents, Direct Biocontrol agents, Direct Biocontrol agents on non targetANGRAUWell established R & D System, qualified Functional AICRP on Sugarcane, facility, lack harvest Gramin Krishi Mausam SewaProject, Biofertilizer Production UnitsLack of Scientific 1. ScientificScope for Isolation of native virulent strains of entomopathogenic development of for utilization of agents on non targetGBPUAT1. G.B. Pant1. Scientific1. Biocontrol agents1. Lack of		KVKs			products
ANGRAUWell established R & D System, QualifiedLack of modern labScope for Isolation of native virulent strains of f Biocontrol agents, Direct risk of Biocontrol of equipments, functional AICRP on Sugarcane, facility, lack harvestHost Specificity of fechnology and techniquesAICRP on Post harvestfacility, lack modernbiopesticides, Scope modernBiocontrol agents on non targetAICRP on Post harvestmodernBiocontrol in techniquesagents on non targetMausam SewaProject, BiofertilizerKrishi Production UnitsHorticultural crops in organic cultivation in export oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Lack of					availability
R & D System, Qualifiedmodern equipments,antive virulent strains ofof Biocontrol agents,Direct agents,Scientificstaff, InsufficientInsufficientfungiand riskofFunctional AICRP on Sugarcane, AICRP on Posttransportdevelopmentof BiocontrolBiocontrol agents on non targetAICRP on Post harvestof exposure to modernfor utilizationfor utilizationagents agentson on targetTechnology and Gramin Mausam SewaProject, BiofertilizermodernBiocontrol agricultural, Horticultural crops in andhra Developmentfor utilization in export oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lackof	ANGRAU	Well established	Lack of	Scope for Isolation of	Host Specificity
Qualifiedequipments, Insufficientof entomopathogenic fungiagents, DirectScientificstaff, Functional AICRPInsufficientfungiand riskofFunctional AICRPtransportdevelopmentofBiocontrolonSugarcane, facility, harvestfacility, of exposure to modernbiopesticides, for utilizationagentson non targetTechnology Gramintechniquesagricultural, Horticultural crops in andhraHorticultural crops in or ganic cultivation in export oriented cropsAICRPBiofertilizer Production UnitsI.Scientific1.LackofGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lackof		R & D System,	modern lab	native virulent strains	of Biocontrol
Scientificstaff,InsufficientfungiandriskofFunctional AICRPtransportdevelopmentofBiocontrolonSugarcane,facility,lackbiopesticides,ScopeagentsonnonAICRPonPostof exposure toforutilizationoftargettargetharvestmodernBiocontrolinagricultural,fortargetfor		Qualified	equipments,	of entomopathogenic	agents, Direct
Functional AICRPtransportdevelopmentofBiocontrolonSugarcane,facility,lackbiopesticides,ScopeagentsonnonAICRPonPostof exposure toforutilizationoftargetharvestmodernBiocontrolinagricultural,targetTechnologyandtechniquesagricultural,targetGraminKrishiHorticultural crops inandhraPradesh,SewaProject,DevelopmentoftechnologiesforBiofertilizerTechnologiesforrechnologiesforProduction Unitsexport oriented cropsagnot crubitation inexport oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.		Scientific staff,	Insufficient	fungi and	risk of
onSugarcane, AICRP on Postfacility, of exposure to modernbiopesticides, for utilizationscope agentsagents targetharvestmodernBiocontrolin agricultural,Technology Gramintechniquesagricultural,MausamHorticultural crops in andhraPradesh,SewaProject, BiofertilizerDevelopment of organic cultivation in export oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lackof		Functional AICRP	transport	development of	Biocontrol
AICRP on Postof exposure toforutilizationoftargetharvestmodernBiocontrolinTechnologyandtechniquesagricultural,GraminKrishiHorticultural crops inMausamandhraPradesh,SewaProject,DevelopmentofBiofertilizerTechnologiesforProduction UnitsorganiccultivationinGBPUAT1.G.B.Pant1.Scientific1.Biofertilizer1.Scientific1.Biocontrol agents1.Lackof		on Sugarcane,	facility, lack	biopesticides, Scope	agents on non
harvestmodernBiocontrolinTechnologyandtechniquesagricultural,GraminKrishiHorticultural crops inMausamandhraPradesh,SewaProject,DevelopmentofBiofertilizerTechnologiesforProduction Unitsorganic cultivation inEBPUAT1.G.B.Pant1.G.B.Pant1.ScientificSeval Production1.Lackof		AICRP on Post	of exposure to	for utilization of	target
Technologyandtechniquesagricultural,GraminKrishiHorticultural crops inMausamandhraPradesh,SewaProject,DevelopmentofBiofertilizerTechnologiesforProduction Unitsorganic cultivation in export oriented crops1.GBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lack		harvest	modern	Biocontrol in	
GraminKrishiHorticultural crops in andhraMausamandhraPradesh, DevelopmentSewaProject,Developmentof TechnologiesBiofertilizerTechnologiesfor organic cultivation in export oriented cropsGBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lack		Technology and	techniques	agricultural,	
Mausam andhra Pradesh, SewaProject, Development of Biofertilizer Technologies for Production Units organic cultivation in export oriented crops GBPUAT 1. G.B. Pant 1. Scientific 1. Biocontrol agents 1. Lack of		Gramin Krishi		Horticultural crops in	
SewaProject, Development of Biofertilizer Technologies for Production Units organic cultivation in export oriented crops GBPUAT 1. G.B. Pant 1. Scientific 1. Biocontrol agents 1. Lack of		Mausam		andhra Pradesh,	
Biofertilizer Technologies for Production Units organic cultivation in export oriented crops GBPUAT 1. G.B. Pant 1. Scientific 1. Biocontrol agents 1. Lack of		SewaProject,		Development of	
Production Units organic cultivation in export oriented crops GBPUAT 1. G.B. Pant 1. Scientific 1. Biocontrol agents 1. Lack of		Biofertilizer		Technologies for	
GBPUAT1.G.B.Pant1.Scientific1.Biocontrol agents1.Lackof		Production Units		organic cultivation in	
GBPUAT 1. G.B. Pant 1. Scientific 1. Biocontrol agents 1. Lack of				export oriented crops	
	GBPUAT	1. G.B. Pant	1. Scientific	1. Biocontrol agents	1. Lack of
University has and are continuously reliable		University has	and	are continuously	reliable
well equipped lab supporting gaining popularity manufacturers		well equipped lab	supporting	gaining popularity	manufacturers
to do research starr is very amongst the farmers for quanty		to do research	stall is very	amongst the farmers	Discontrol
aless house and each)		work along with	less (one	of Uttaraknand.	Diocontrol
fields to conduct 2. Farmers who have 2 Formers are		glass nouse and fields to conduct	each).	2. Farmers who have	agents.
the research trials 2 Required significantly reduced not getting		the research trials	2 Dequired	significantly reduced	2. Faillets are
mass pesticide and increased prices		the research trials.	2. Required	pesticide and	increased prices
2 State production agrochemical use of quality		2 State	production	agrochemical use	of quality
government is also lab with have identified the produce		government is also	lab with	have identified the	produce
promoting organic adequate Biocontrol Lab (organically		promoting organic	adequate	Biocontrol Lab	(organically
Agriculture, in human Pantnagar for the grown		Agriculture in	human	Pantnagar for the	grown)
Uttarakhand state. resources to direct supply of 3. Lack of		Uttarakhand state	resources to	direct supply of	3. Lack of
meet out the awareness for			meet out the		awareness for

	3. This lab has	demand of	Bioagents.	Biocontrol
	been certified as	local farmers.		agents amongst
	Central	3. Low		the farmers as
	Insecticidal Lab by	contingency		they need
	Govt. of India and	grant		immediate
	as Referral lab for			results.
	sample testing by			4. Big pressure
	DBT.			of Agrochemical
				companies on
				whole system
				including
				farmers.
KAU, Thrissur	1. Forty five years	1. Lack of	1. The increased	1. Frequent,
	of experience and	adequate land	awareness towards	unpredictable
	expertise in	for conduct of	safe to eat food and	changes in
	research on	experiments.	increased popularity	physical
	biocontrol.	2. Non	of urban agriculture	environment and
	2. Excellent	availability of	among general public	consequent
	linkage with the	funds for	is expected to create	changes in pest
	State Department	upgradation	greater demand for	distribution and
	of Agriculture and	of laboratory	biocontrol	abundance
	other major	facilities since	technologies.	leading to
	agencies like	2010.	2. The rich	uncertainty in
	Vegetable and	3. Non	biodiversity in the	outcome of field
	Fruit Promotion	availability of	state offers	experiments.
	Council, Keralam,	a serviceable	possibilities for	2. Reduction in
	State Horticultural	vehicle. The	unearthing potential	outlay due to
	Mission, AIMA	present	natural enemies	extraneous
	elc.	venicle is		1actors
	S. Proximity to	twenty live		5. Increasing
	A griculture	is due to be		towards applied
	Thrissur which	condemned		end of
	ensures ready	Hiring is not		deliverables
	access to a large	feasible for		eliminates
	pool of expertise	frequent short		possibilities for
	across disciplines	trips on a		basic research
	as well as	daily basis.		that can lead to
	infrastructure	4. Gross		impactful
	facilities.	inadequacy of		technologies.
	4. A mass	technical an		
	production facility	supporting		
	for bioagents in	staff		

[1	
	revolving fund	consequent to		
	mode which	reduction in		
	produces and	staff strength		
	distributes five	from six to		
	microbial agents	two		
	and one parasitoid,	5. Lack of		
	with an annual	adequate		
	turnover of Rs. 25	support for		
	lakhs.	registration of		
		bioagents		
		especially by		
		PSUs		
		hampers the		
		potential for		
		use of		
		microbes in		
		crop		
		protection		
	1 MDZV David		1 Decelerate of	1 To dia minute etc.
MPKV	1. MPKV, Pune	1. Lack of	1. Development of	1. Indiscriminate
	Centre nas wen	awareness	ocal effective strains	use of broad
		among the	of bio-agents and	spectrum
	biocontrol	farmers about	biopesticides will	chemical
	& bipesticic des	the harmful	provide more	pesticides by
	production	effects of	opportunities for	farmers destroys
	laboratory, Highly	chemical	mass production and	the population of
	developed	pesticides and	development of	natural enemies
	intrasturcture for	long term	entrepreneurship.	to a great extent
	the production of	beneficial	2. Creating awareness	2. There is
	major bioagents	effects of	about health	competition
	and biopesticdes	biological	cautiousness among	among pesticide
	2We have a good	control.	consumers will result	manufacturing
	collaboration with	2. Farmers	in a shift regarding	companies
	Department of	generally	use of biocontrol	which are having
	Agriculture for	assess the	agents in the pest	quick mode of
	large scale	pest	management	action as
	dissemination of	management	strategies of crop pest	compared to
	biocontrol	technology in	3. More farmers are	bioagents
	technologies at	terms of	turning towords	3. Emerging
	farmers' fields	quick pest	organic farming.	pests problems
	Strong linkages	mortality and	Augumentation of	are posing a new
	with extension	ignores the	natural enemies in	challenge
	scientists of KVKs	harmful	organic farming helps	4.The non-
	and State	effects of	in conservation and	availability of

	Agriculture/Hortic	chemical	enhancement of the	natural enemies
	ulture Department	pesticides.	exhisting biodiversity	at appropriate
	for promotion of	3. Lack of	of natural enemies	time is
	proven Biocontrol	availability of	.Organic farming has	hampering the
	technologies	micro and	given tremendous	adoption of
	3. Diversity of	macro	scope for	biological
	biocontrol agents	bioagents in	popularizing	control on a
	in different	large	biocontrol methods	large scale.
	agroecological	quantities to	for suppression of	5. Large scale
	zones of	the farmers is	crop pests.	mass production
	maharashtra,	a limiting		of bioagents is
	4. Successfully	factor.		also one of the
	controlled Papaya			biggest threat in
	mealy bug by			managing insect-
	using			pests
	Acerophaguspapay			-
	ae and predators,			
	Schymnus,			
	Mallada, etc. in			
	Maharashtra.			
	5 Successfully			
	controlled			
	Sugarcane woolly			
	aphids in			
	Maharashtra by			
	using the predators			
	Diphaaphidivora,			
	Micromusigoratus			
	and			
	Eupeodusconfrater			
	.The scientists of			
	this center have			
	developed simple			
	method of mass			
	production of			
	these predators.			
	F			
PAU	1. PAU centre has	1. Limited	1.Scope for increase	1. Indiscriminate
	recommended 14	availability of	in production of	use of broad
	biocontrol	commercial	bioagents and area	spectrum
	technologies to	biopesticides	under biocontrol as	pesticides by
	farmers of Punjab	in the local	eco-friendly and	farmers destroys
	(included in PAU	market	ecologically	the population of
	1			

POPs)	2. Limited	acceptable alternate	natural enemies
2.Well-equipped	biocontrol	way for bio-	to a great extent
biocontrol	production	suppression of crop	2.Competition
laboratory for the	units in	pests to produce	from pesticides
mass production of	Punjab	residue free crop	which are having
bioagents	3.Lack of	2.Exploring BIPM	quick mode of
3.Collaboration	awareness in	technologies under	action as
with sugar mills	the farmers as	organic and protected	compared to
for large scale	well as end	cultivation conditions	bioagents
dissemination of	users about	3.Integrating	3.The practice
biocontrol	the side	biogents/	like stubble
technologies at	effects of	biopesticides as a	burning in
farmers' fields	indiscriminate	component of IPM to	Punjab is likely
Strong linkages	usage	reduce the pesticide	to pose a great
with extension	pesticides on	load in different crops	threat to natural
scientists of	environment,	in Punjab	enemy and soil
KVKs, FASC and	non-target	4.Identification of	microbial fauna
State	species	potential natural	4.Emerging
Agriculture/Hortic	including	enemies (arthropod	pests problems
ulture Department	human	and microbial) from	are posing a new
for promotion of	beings.	various agro-	challenge
proven Biocontrol	4.Area under	ecological zones of	
technologies	organic	Punjab	
	farming in	Isolation,	
	Punjab is	characterization and	
	quite less	evaluation of	
	5.Funds for	indigenous isolates of	
	dedicated	entomopathogens	
	production	against key insect	
	facility to	pests in different	
	enhance	crops	
	production at		
	commercial		
	scale are		
	sparse		
	6.Microbial		
	production up		
	scaling on		
	commercial		
	scale limited		
	due to		
	registration		
	issues		

		Quality		
		control of		
		commercial		
		biopesticides		
PJTSAU	1)Well established	1) Lack of	1) Lot of interest	1)Indisctriminate
	laboratory	skilled	from farmers	use of chemicals
	2) strong linkages	manpower in	regarding the use of	by farmers
	with the extension	the scheme to	biopesticides in the	2) Lack of
	system and	help in better	market 2) Good	manpower to
	farmers to	conduct and	awareness about the	carry out trials in
	experiment	dissemination	use of biocontrol	large scale
	biocontrol	of biocontrol	agents in farmers 3)	
	technologies in	knowledge to	Farmers come	
	large scale	farmers	forward voluntarily to	
	3) complete	2) Less	give land for	
	cooperation and	supporting	experimentation to	
	guidance from the	staff	the scheme	
	University policy	3) Lack of		
	makers	funds to carry		
		out civil		
		works of the		
		scheme		
SKUAST,	1.Well established	Lack of		Indiscriminate
Srinagar	biocontrol	heating in bio		use of pesticides,
	laboratories for	laboratories		Incursion of
	mass production.			exotic pests and
				threat to crops,
				Farmers donot
				have faith on the
				biopesticides for
				complex pest
				atateks and
SKUAST,	2. Initated the	Old		Extensive use of
Srinagar	pheromone	computers		synthetic
	technology	and need to		insecticides
	laboratory and	run the		
	prepraing lures.	models to persue AI		
TNAU	1 Farmers are	1 Lack of	1 Identification of	Extensive use of
	interested in using	awareness	new isolate of	synthetic
	biological control	about the long	entomonathogens	insecticides
	ciological control	about the long	emonopunogens	mooreneres

	agents for the	term benefits	viz., Beauveria	
	management of	of biological	bassiana and	
	insect pests	control	Metarrhizium	
	2. Department of	among the	anisopliae	
	Agriculture,	farmers	2. Intensification of	
	Government of	2.Slow action	mass production of	
	TamilNadu is	of biological	entomophages	
	showing keen	control agents		
	interest in			
	promotion of			
	biological control			
	agents			
	3. Sufficient			
	infrastructure for			
	the mass			
	production of			
	biological control			
	agents			
	available at TNAU			
YSPUHF.		Lack of	Ceating awareness	The
Solan		awareness	about health	indescriminate
		among the	cautiousness among	use of pesticides
		farmers about	consumers will	is the
		the harmful	result in a shift	biggest threat for
		effects of	regarding use of	diminishing of
		chemical	biocontrol agents in	biocontrol
		pesticides	the pest	agents.
		and long term	management	Lack of well
		beneficial	strategies of crop	trained extension
		effects	pests.	personnels
		of biological	Collection and	for
		control.	Identification	dissemination of
		Farmers	as well as	Biocontrol
		generally	development of local	technology to
		assess the	effective strains of	the farmers in
		pest	bio-agents will	Pest
		management	provide more	Management.
		technology in	opportunities for	The non-
		terms of	mass	availability of
		quick pest	production and	natural enemies
		mortality and	development of	at appropriate
		ignores the	entrepreneurship.	time is
		harmful		hampering the

		effects		adoption of
		of chemical		biological
		nesticides		control on
		Availability		a large scale
		of		a large scale mass
		01 Motarhizium		production of
		metarnizium		biogents is also
		and		one of the
		Maagaiulug		biggast throat in
		longigninggug		monoging insost
		in lorgo		managing insect-
		augustitios		pesis
		qualities		
		to the farmers		
		is a minung		
		lactor		
CAU	Department of	Lack of	Arunachal Pradesh	Application of
	Agriculture,	skilled	being biodiversity hot	chemical
	Government of	manpower,	spot, organic farming	pesticides, Lack
	TamilNadu is	modern	oriented state there	of large scale
	showing keen	equipments	are greater scope for	active mass
	interest in	for mass	exploration, demand	production
	promotion of	production of	for native strain based	laboratories,
	biological control	biocontrol	quality biopesticides	Lack of skilled
	agents	agents of crop	and application of	man power for
		pests	biocontrol agents for	transfer of
			the promotion of	technology,
			organic plant	Untimely
			protection and thus	availabality of
			export of high value	biocontrol
			crops	agents due to
				transporation
				difficulties, Lack
				of awreness
				among farmers
				especilally of
				remote hilly
				zone areas and
				outbreak of new
				pests and
				diseases
MPUAT		Lack of	Scope of mass	Transfer of
		skilled	popularisation of	technology from
		manpower	bioagent &	lab to field

l .	· · · · · · · · · · · · · · · · · · ·			
		and modern	biopesticides in field	would not be
		lack	& vegetable crops,	mate out due to
		equipments,	Development of	lack of fund &
		Insficicent	native bio control	manpower,
		fund for the	agents, which can	Minimum
		regular	tolerate salinity and	support from
		opration of	water stress	Govt.
		laboratories		functionaries for
		and mass		the
		popularisation		popularisation of
		of the		the use of bio
		technology		agent & bio
				pesticides
OUAT	Old laboratory	• Old	· Bio-control agents	• Due to
	for bio-agents	infrastructure	are gaining popularity	indiscriminate
	production	facility and	among farmers of	use of broad
	 Strong linkage 	lack of funds	Odisha in Sugarcane	spectrum
	with KVKs and	to carry out	and Rice crop. •	pesticides by
	state Agriculture	the civil work	Scope of mass	farmers in the
	departments of the	of the	popularization of bio-	field as well as
	state of Odisha for	scheme. •	agents and bio-	in vegetable
	conducting the	Lack of	pesticides in field as	crops,
	demonstrations	modern lab	well as in vegetable	population of
	(BIPM) in the	equipments. •	crop.	natural enemies
	farmers field in	Lack of		decrease to a
	large scale.	supportive		great extent.
	 BIPM practices 	staff		•Lack of reliable
	on sugarcane and	(laboratory &		manufactures of
	Rice crop showed	field) for		quality bio-
	promising results	mass		control agents
		production		producer
		and release		1
UAS,	1. Well established	1. Lack of	1. Consumers are	1. Legal threat
RAICHUR	laboratory with	liquid	preferring the organic	due to lack of
	desired	formulations	products which in	CIB and RC
	infrastructure to	of the	turn promoting	registration of
	scale up	biocontrol	organic cultivation	biopesticides
	production	agents	and the key input for	
	2. Availability of	2. Lack of	organic cultivation is	
	dedicated and	large-scale	the use of quality	
	skilled manpower	production	biocontrol agents	
	3. RKVY funded	protocols like	2. Under ODOP	
	project for new	fermenter	scheme lot of demand	

	building and	technology	for biocontrol agents.	
	infrastructure	for mass	3. Few biopesticides	
	exclusive for	production of	have become very	
	biocontrol	EPF	popular among the	
	production	3. Lack of	farmers and getting	
	4. Organic	quality	good results in chilli	
	Agriculture is	control	and sugarcane	
	being promoted by	system for	ecosystem	
	the state	biocontrol	4. Diversity in	
	government which	agents	cropping pattern	
	demands quality		allows to liquid ate	
	biocontrol agents		the biocontrol agents	
	5 Due to		in major crops of	
	continuous efforts		Northeastern	
	by the biocontrol		Karnataka	
	team and KVK s			
	farmers are			
	coming forward to			
	opt biocontrol			
	agents			
CDCDI	Cood laboratory	Demonstral and	Diogramta	Dialagiaal
CFCKI	facility for mass	tell system for	Entomorphage and	biological
	naching for mass	affective	(Entomophaga and	solutions with
	production of	effective	entomopathogens)	mass production
	Ovalified and	spraying of	are viable options in	protocol lor
	Qualified and	Nood for field	pest suppression of	like red relm
	potential faculties	lovel	Concontin	like red pain
	Working as a team	level	biological control	weevil allu
	avports avolvo	staff for	through zoro	Detential
	tangihla hiogontrol	stall 101	ahamiaal toloronaa	rotential
	calutions for	dete generatio	chemical tolerance	including evotion
	complex field	uata generatio	can be boosted up in	whiteflies and
			Ecosystem services	and and and
	Biological		and economic	preparedness
	suppression		hanafits in coconut	modulo
	coconut black		needs documentatio	module
	beaded caterpillar		needs documentatio	
	and scale insects			
	and scale insects			
	aic pair mula			
	SUCCESS SIONE			
IIHR	aualified scientist	lack of man	large scale production	indiscriminate
	quanneu scientist	nower	large scale production	
		hower		usc 01

				insecticides
IIMR,	1. Largest group of	1. Being dry	1. Millets are by and	1. The area
Hyderabad(Mi	plant protection,	land crops	large grown under	under millets
llets)	strong network of	grown under	rainfed conditions	especially
	AICRP centers of	rain fed	with minimum or no	sorghum is being
	Sorghum and	condition	fertilizers and	lost to more
	small millets and	(rabi)	pesticides hence	remunerative
	Pearl millets for	establishment	biocontrol agent use	crops like
	conducting multi-	of bio-control	and plant products for	soyabean, cotton
	location trials for	agents is	management of insect	which command
	validation of	poor, though	pests will help in	higher prices.
	technologies	success is	organic labeling thus	
		there in	realizing higher	
	2. Expertise in	irrigated	margins.	
	Insect host plant	crops where		
	resistance as	EPF are	2. Less or no use of	
	millets are grown	applied.	pesticides throws	
	in marginal lands		scope for natural pest	
	and receives	2. Slow	management and bio	
	minimum or no	results of	control interventions.	
	inputs (fertilizer,	biocontrol		
	pesticides)from	agents in		
	farmers	comparision		
		to insecticides		
IIRR,	1. Largest network	NO	1. Changing Climate	Rice cultivation
Hyderabad	of Rice plant	established	needs to be adressed	is being
	prpotection group	production	and its imapct on	threatened by
	under AICRP in	lab for mass	natural enemies need	lack of water,
	rice with 44	production of	to be studies.	pest out breaks
	centres spread	biocontrol	2. The pest and	and monoculture
	across the country	agents related	natural enemy	of few mega
	2. PI and COPI are	to rice	diversity in terms of	varieties.
	entomology and		molecular taxonomy	Climate changes
	pathology		needs to be taken up.	resultsin change
	combimation		Species from across	in pest status.
	working in the		country needs to be	Minor
	field of rice		studied.	pestsbecme
	biological control		3. Novel methods to	major pests.
	for several years.		enhance biocontrol	Indiscrimintae
	3. Special training		through chemical	dependence on
	in Australia for		ecology is an	pesticides and
	novel methds to		upcoming field for	lac of avaiability
	enhance		collaborative work. 4.	of pheromone

	Biological control		Bioagernts and their metabolites for management of rice disseases can be studied	traps and bio control gaents is a major hurdle for bio intensive pest management. IN the institute level lack of infra structure and personnel for
				and production of biocontrol agents is a major threat
IIVR,Varanasi	Qualified & potential faculties working as team	During summer high temperature accompanied with low humidity in and around Varanasi restrict the use of biocontrol agnets in the field	 Short duration vegeatables Use of entomopathogens have a graeterroel in vegetable pest management 	Use of insectiides by the farmers
DRYSRUH, Ambajapeta		*lack of full fledged scientists under AICRP on biocontrol	*scope for research on predators, prasitoids and bioagents of coconut, cocoa and vegetables with special reference to Rugose spiralling whitefly in coconut and pod rot nd stem canker in cocoa, * exploitation of native biocontrol agents against major insect pests and diseases of cocoa	*outbreak of new insect pests and diseases due to climate change, *Difficulties in registartion of bioagents

IGKV	well established	Lac of	*scope for research	1. lack of
	biocontrol lab	modenequipm	on predators,	awareness of
		ents	prasitoids and	farmers about
		(Steriomicros	bioagents of Rice,	utilization/applic
		cpe BOD,	maize, chickpea,	ation of
		refrigeretor	pigeonpea ,	bioagents for
		etc). Limited	vegetables and	crop pests
		production of	sugarcane, *	2. Less adoption
		bio agents	identification and	of bio control
			mass rearing of local	agents, less area
			native bioagents and	of
			exploitation against	natural/organic
			crop pests	farming
				3. Use of broad
				spectrum
				pesticides in the
				field
KAU,	well established	lack of	greater demand for	Possibility of
Kumarakom	biocontrol lab,	qualified	bioagents and ample	floods every
	qualified scientific	supporting	scope for mass	year resulting in
	staff	staff,Shortage	popularisation,Develo	a situation to
		of land area	pment of native bio	conduct all
		for doing	control agents which	experiments
		evaluation	can tolerate salinity	during the same
		studies,non	and water stress	part of year,
		availability of		salinity during
		sufficient		summer months,
		labour		high weed
				menace
KAU,	1. Expertise in	1. Lack of	1. Potential	1.Frequent crop
Vellayani	biological control			1 1
		supporting	indigenous isolates of	loss due to
	for 25 years	supporting staff 2. Lack	indigenous isolates of entomopathogenic	loss due to natural disasters
	for 25 years 2.Well established	staff 2. Lack of largescale	indigenous isolates of entomopathogenic fungi	loss due to natural disasters 2.Changing
	for 25 years 2.Well established Biocontrol	supporting staff 2. Lack of largescale production	indigenous isolates of entomopathogenic fungi 2.Public awareness on	loss due to natural disasters 2.Changing climatic
	for 25 years 2.Well established Biocontrol Laboratory with	supporting staff 2. Lack of largescale production facilities	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food	loss due to natural disasters 2.Changing climatic situations
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for	supporting staff 2. Lack of largescale production facilities 3. Lack of	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production "	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for research and mass	supporting staff 2. Lack of largescale production facilities 3. Lack of advanced	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production " 3.Ever increasing domand for	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted pest outbreak
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for research and mass production	supporting staff 2. Lack of largescale production facilities 3. Lack of advanced research facilities	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production " 3.Ever increasing demand for biopesticides	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted pest outbreak 4.Spurious
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for research and mass production iii. A good rapport with State Dept of	supporting staff 2. Lack of largescale production facilities 3. Lack of advanced research facilities.	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production " 3.Ever increasing demand for biopesticides fungi	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted pest outbreak 4.Spurious products of biopesticides
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for research and mass production iii. A good rapport with State Dept of Agriculture	supporting staff 2. Lack of largescale production facilities 3. Lack of advanced research facilities. 4. Complicated	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production " 3.Ever increasing demand for biopesticides fungi	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted pest outbreak 4.Spurious products of biopesticides
	for 25 years 2.Well established Biocontrol Laboratory with basic facilities for research and mass production iii. A good rapport with State Dept of Agriculture Development and	supporting staff 2. Lack of largescale production facilities 3. Lack of advanced research facilities. 4. Complicated and lengthy	indigenous isolates of entomopathogenic fungi 2.Public awareness on "safe to eat food production " 3.Ever increasing demand for biopesticides fungi	loss due to natural disasters 2.Changing climatic situations 3.Unprdicted pest outbreak 4.Spurious products of biopesticides

	iv. Wide	registration		
	dissemination of	procedures		
	knowledge on	F		
	biocontrol to the			
	students as it is			
	attached to the			
	largest college of			
	KAU			
	v. Common outlet			
	in college for sale			
	of biocontrol			
	agents vi. Funding			
	from ICAR -			
	NBAIR			
	Having one	No seperate	This Sub-Himalayan	Lack of
UDK V	hiocontrol	laboratory for	region is very much	awareness and
	laboratory under	mass	rich in biodiversity of	awarchess and
	EL P programme	nraduction of	native bioagents	commercially of
	ELI piogramme	bioagents	which are yet to be	produced
		under AICRn	explored In this	bioagents
		on Biological	underdeveloped	throughout the
		control Lack	ragion several tibal	state Small land
		of full fladgad	formara still follows	bolding and
		of full fleuged	natural forming	monoinol
		technical	natural farming	formore Hoovy
		stoffa	biocontrol toobhology	rainfall area
		stans.	biocontrol technology	rainfall area.
			can be implemented.	
PDKV			2.Public awareness on	
			"safe to eat food	
			production "	
SKUAST -	Biocontrol lab is			Lack of
Jammu	established,			awareness
	biopesticides are			among the
	being multiplied as			farmers. Ready
	per demand			availability of
				effective
				bioagents is a
				major challenge
				for farmers of
				the whole region
				as no
				commercial

				biopesticide
				is there.
UHAS, Shivamogga	* Well established state of art Biocontrol agents production laboratory *qualified research staff * well established research and development system		1.Ever increasing demand for biopesticides	
DRYSRHU, Tirupati	1. Higher each to thethefarming community2.Fieldandirrigation facilities3. Training halls and farmers guest house available 4.Expertise staff in plantplantprotection and production of certified quality planting material	Bio-control Laboratory for mass production of bioagents not available, Technical staff required	Research on innovative formulations (biopesticides) which is needed by the fruit growers	Frequent pest outbreaks, Quality biopesticides a major concern due to which farmers are loosing trust
IIMR (WNC), Hyderabad	Expertise in insect host plant resistance aspects and strong linkage with AICRP centres of maize to validate experiments in multi location trials	Lack of laboratory space for the production of biocontrol agents at WNC ICAR-IIMR, Hyderabad and to be established at Ladhowal.	Development of potential biopesticides and biocontrol agents for sustainable management of insect pests Awareness creation among the farmers on biocontrol agents	Witnessing emerging pest problems
NIPHM	Well-equipped state of art biocontrol laboratory with suitable equipment	LackofresourcesandfundingtocarryoutAICRPBC	Facilities are available to take up adaptive research (Biocontrol laboratory,	Frequent, unpredictable changes in physical environment and

	required for	work.	demonstration field	consequent
	production		and polyhouse).	changes in
	and quality control		Identification and	pest distribution
	of biopesticides.		improvement of local	and abundance
	Biocontrol lab is		strains of different	leading to
	also having		entomopathogens.	uncertainty in
	facilities for			outcome of field
	maintenance and			experiments.
	production of			Emerging pests
	predators,			problems are
	parasitoids and			posing a new
	conducting			challenge (Alien
	exclusive training			invasive species)
	programs on			
	production			
	protocol for			
	biocontrol agents			
	and biopesticides			
	and. In addition,			
	NIPHM is			
	conducting on-			
	farm production of			
	biocontrol			
	agents to different			
	stake holders			
	(Agriculture			
	Extension Officers			
	and above of State			
	Department of			
	Agriculture /			
	Horticulture of			
	various States and			
	Technical Officers			
	and Scientific			
	Staff of			
	DPPQ&S,			
	ICAR,SAUs and			
	KVKs / Any			
	Government			
	officials related to			
	the subject)			
	including farmers.			
NRRI, Cuttack	1)Well established	1) Being a	1) Less exploration	1) Regular

biocontrol	voluntary	on native biocontrol	occurrence of
laboratory,	centre lack of	agents exists. Thus,	natural
competent	fund to carry	lots of opportunity to	calamities
scientific staff	out large	identify native	especially
working on	scale activites	biocontrol agents is	cyclones and
biocontrol and	2) Lack of	possible	super cyclones is
application of	manpower to	2) Development of	a worse
different tools for	engage them	novel biocontrol	limitation
increased	fully on	agents and climate	2) Ensuring
performance of	biocontrol	resilient biocontrol	availability of
biocontrol agents	activities	agents is possible	biocontrol
2) Globally	based	with availablity of	agents in a large
competent institute	experiments.	modern	quantity and
on rice research,	Only the	biotechnology tools	right time will
thus in-depth	manpower	3) Commendable area	be a major
exploration on	available with	of cultivation is	challenge
biological control	other projects	avaiilable near the	3) Convincing
of rice infesting	were diverted	forest, and delta area	the farmers who
insect/disease	for limited	where the popular	practised with
pests can be done	time and	programme like TSP,	application of
3) Hotspot	achieved the	SCSP sub-plans were	chemical
location for many	goal with	already taken up very	pesticides and
of the insect and	painful effort	successfully with	visualised the
disease pests.	3) Farmers	promising output in	immediate effect
Thus, evaluation	expectation of	the institute. Thus,	to change to
of bicoontrol	quick and	there is more	biocontrol
agents and	knock down	possiblity to	agents which
identifying the	effect for pest	introduce the	will have late
strain performing	management	biocontrol agents and	effect will be a
better against the	which they	get a promising result	challenging task,
insect/disease pest	get satisied	in terms of reducing	but can be
will be very	with chemical	pesticide usage,	achieved with
authenticate 4)	pesticides	promoting	our proper
Many pathogens	4) Lack of	environmental safety	approach
been submitted for	promotion of	etc.	
patent where one	biocontrol	4) Better coordination	
product was	agents by the	by the farmers and	
provided with	pesticide	line government	
patent during the	dealers	department personnel	
last year. Thus,		with the institute is a	
more scope for		postitve platform to	
developing a novel		promote the well-	
bicoontrol agent		proven technology	

 1 . 1 1		
which can be	5) Flagship	
submitted for	programmes which is	
patenting.	running in the	
5) State art	institute has a place	
laboratories on	of activity	
biocontrol,	concetrating on	
pesticide residue,	technologies for 30%	
availability of	pesticide usage	
advanced	reduction increases	
equipments for	the scope for	
mass production of	promoting the	
biocntrol agents is	biocontrol based	
a additional	activity.	
strength	6) Lots of visits and	
	contact with the	
	institute by the	
	farmers increases the	
	scope to disseminate	
	the better performing	
	technology	

XXX. Infrastructure and physical facilities developed

Sl.	Centre	Infrastructure	Amount	Purpose
No.		developed	spent	
			(Lakhs)	
1.	GBPUAT	Well Established Biological control laboratory having eight labs; a cold room and a smart class room. These labs are equipped with highly specialized equipments like Live Cell Image Analyser, Biolog, HPLC, PCR, RT-PCR, Flowcytometer, Spectrophotometer, Millipore water distillation machine, -80 & -20 ^o C Deepfreezers,	200.00	To conduct research work under biological control, trainings to researchers and mass production of Biocontrol agents
		BODs, Laminar Flow		

		Chamber, Autoclaves,		
		Hot air oven, water Bath.		
		and many more		
		Biocontrol Laboratory,		
		Pantnagar is a referral		
		laboratory for testing		
		quality of biopesticides.		
		1		
2.	PAU,	Renovation and	Rs. 15.00	Mass production of host
	LUDHIANA	upgradation of biocontrol	(RKVY	insect and bioagents
		(predator and parasitoid)	and	
		laboratories	ICAR)	
			*	
		Net house facility	1.00	To conduct research trials
		i tot nouse nuclinty	(From	under net house conditions
			State	
			Schemes)	
2	CAU	Depayation of Discontrol		Panavation of Piccontrol
5.	CAU, Desighet	laboratory	5.04	laboratory for mass
	Pasignat	laboratory		laboratory for mass
4	17 4 1 1		2.00	production of bio-pesticides
4.	KAU,	Establishment of a	2.00	Production of <i>I.japonicum</i>
	Vellayani	Trichogramma		and <i>I.chilonis</i>
		production unit		
5.	SKUAST,	Construction of Poly	5.00	Rearing of insects under
	Srinagar	house		controlled conditions
		Laboratory for mass	1.00	Mass production of
		production of		Trichogramma
		Trichogramma spp.,		
		predators and pathogens		
		Camera	0.50	Images of insects
6.	PJTSAU	A green shadenet of 200	0.32	To conduct trials on testing
		sq.m area		of entomopathogenic fungi
				and bacteria on various
				crop pests
7.	MPKV	A well equippedreferral		Mass multiplication
		biocontol laboratory		ofbiocontrol
				agents. Testing the quality
				of biopesticides
8.	TNAU	Renovation of Corcyra	2.55	To enhance the production
		unit	(Private	of entomophages
			scheme	

			funds)	
9.	SKUAST-	Production unit for		To supply the requisite
	Jammu	production of		bioagents to the line
		Trichoderma harzianum,		departments and farmers, as
		T. asperellum,		per their requirement
		Pseudomonas		
		fluorescens, Bacillus		
		subtilis, Beauveria		
		bassiana, Metarhizium		
		anisopliae, Lecanicillium		
		lecanii		
10.	OUAT	Bio control laboratory		production of the
				following bio-agents Ex :
				Trichigramma spp.,
				Chrysoperla zastrowi
				sillemi ,Bracon hebetor,
				Goniozus nephantidis,
				Cryptolaemus
				montrouzieri. and Chelonus
				blackburni
11.	AAU,	Laboratory for the mass	81.92	For the mass production of
	Anand	production of native		microbial biopesticide
		biocontrol agents for		Metarhizium anisopliae and
		insect pest management		Bacillus thuringiensis
		Facility for the mass	160.00s	For the mass production of
		production of microbial		microbial biopesticide
		biopesticides for plant		Pseudomonas fluorescens
		disease management		
12.	AAU, Jorhat	One Research	2.60	For observation of
		Microscope		predators, parasitoids etc
		2 nos 1.5 ton Air	1.10	To house the equipments
		Conditioner		
		Date	0.61	
		DSLR camera	0.61	Trichogramma rearing
		Commuter and minter	0.74	Ean de exercente mintine
12		Storage age microscore	0.74	For documents printing
15.	YSPUHF.	Stereo zoom microscope	0.88	studying the morphological
	Solan			character of bloagents
				Maintananaa of mura
			6.00	aulture and study of
			0.00	culture and study of

		BOD incubator		biology of bioagents
		Repair of culture room	1.14	For maintenance of culture of host insects and their natural enemies
		Hot air oven	1.00	For drying the glass wares making permanent slides
		Phase contrast compound microscope with image analysis system	-	Used for studying the morphological characters of insects and fungus
		Stereomicroscope with image analysis system	-	Used for studying the morphological characters of insects and fungus
		Autoclave	-	Used for sterilization of media for raising culture of microbials
		Environmental chamber	-	Maintenance of culture of host insects and natural enemies.
		Laminar flow	-	For inoculation of pure culture of microbials culture
		Polyhouse, <i>Corcyra</i> rearing facility	-	Rearing of crops and raising of culture of sp. This laboratory will be
		Addition of New laboratory for Biocontrol	-	utilized for insect pathological studies
14.	KAU, Thrissur	Renovated the insect pathology lab and instruments such as	78.03 (From SHM	Quality control of microbial biopesticides
		trinocular microscope with HD camera, cooling incubator shaker, micro fermenter etc were procured	project)	

An additional unit for	3.50	Mass rearing of
Trichogramma		<i>Trichogramma</i> on
production was		Corcyra eggs
established.		
A solar system was	Free of	Energy is being used for
installed on the roof top	cost from	functioning of different
of new building	DPP,	equipments in incubation
	KAU	and inoculation rooms

XXXI. Collaboration with Inter-institutional and interdisciplinary linkages:

AAU, Anand

- Collaborated with Krishi Vigyan Kendra, Navsari Agricultural University (NAU), Vyara and Krishi Vigyan Kendra, Navsari Agricultural University (NAU), Dediapada and ICAR- Krishi Vigyan Kendra, Mangalbharti, Vadodara for tribal sub plan programme
- Collaborated with NGOs Triveni Kalyan Foundation (TKF) and Gram NirmanSamaj (GNS) functioning under the aegis of Pidilite Industries, Mumbai for the large-scale demonstration of bio-agent based IPM module for the management of whitegrub in groundnut in Mahuva and Bhavnagar area of Gujarat.

ANGRAU

Collaborative trials with ICAR- NBAIR, Bengaluru as co-investigator in developing technologies –

- *Metarhizium anisopliae* ICAR-NBAIR Ma4 for the management of white grubs in Sugarcane (2015-2016 to 2018-19)
- *Metarhizium anisopliae* ICAR-NBAIR Ma35 for the management of fall armyworm in Maize (2018-19 & 2019-20)
- *Bacillus thuringiensis* NBAIR Bt G4 for the management of Pigeon pea pod borer complex (2015-2017)
- Field evaluation of ICAR-NBAIR entomopathogenic strains against Rice stem borer (*Scirpophaga incertulas*), leaf folder (*Cnaphalocrosis medinalis*), Brown plant hopper (*Nilaparvata lugens*) (2019-2022)
- Field evaluation of ICAR-NBAIR strains against Rice Blast (*Magnaporthe oryzae*),Brown spot (*Bipolaris oryzae*) and Sheath blight (*Rhizoctonia solani*) (2019-2021)
- Management of leaf spot and color rot in groundnut through biocontrol agents (2019-2021)
- Management of thrips in Capsicum through biocontrol agents (2019-2021)

OUAT

• Linkages were developed with KVKs of the state and other laying departments of the state Govt. of Odisha like Department of Agriculture and food production of Odisha,

Dept of Horticulture, Odisha, CIPMC, Odisha and other institutes like ICAR-NRRI, Cuttack and ICAR-CIFA, Bhubaneswar etc.

TNAU

- Farmer's awareness campaigns, training programmes and field demonstrations were conducted in collaboration with the Department of Agriculture, Government of TamilNadu.
- Nymphal parasitoid, *Encarsia guadeloupae* and chrysopid *Apertochrysa astur* eggs were produce and supplied to the farmers for the management of coconut rugose spiralling whitefly, *Aleurodicu srugioperculatus* under the coconut development board scheme titled "Mission mode programme on the management of coconut rugose spiralling whitefly, *Aleurodicus rugioperculatus* Martin with nymphal parasitoid, *Encarsia guadeloupae* Viggiani".
- *Anagyrus lopezi* and *Apertochrysa astur* were released in cassava fields in Erode Dt. For the management of cassava mealybug in Colloboration with NBAIR, Bengaluru and SPAC, Poonachi.
- Field demonstrations on the use of Biological control agents were conducted by B.Sc. (Agri) Students under RAWE programme organized by Dept. of Agricultural Extension, TNAU, Coimbatore

MPKV

• MoU with *Pani Foundation*, State Department of Agriculture, Maharashtra and, MPKV, Rahuri.

CAU, Pasighat

- CAU-Pasighat with ICAR-NBAIR, Bengaluru
- CAU-Pasighat with ICAR-NCIPM, New Delhi
- CAU-Pasighat with AAU-Jorhat

SKUAST, Srinagar

- SKUAST-K & SKUAST-K AICRP-BC
- SKUAST-K, AICRP on Maize with AICRP-BC SKUAST Centre
- SKUAST-K, AICRP-BC and NBAIR
- SKUAST-K, AICRP BC
- SKUAST-K, AICRP-BC and Department of Horticulture, Kashmir
- SKUAST-K, AICRP-BC and Advanced Centre for Horticulture

UBKV, Pundibari

• The ongoing research programmes based on entomopathogenic fungi are being conducted in collaboration with scientist from the Department of Plant Pathology, UBKV.

IIRR

• BIO control products from NBAIR and collaborating institutes suchs s NRRI KAU are being tested through rice AICRP in multi institute mode

AAU, Jorhat

- Collaboration with Deptt.Of plant pathology for biopesticides production, M.Sc and Ph.D. research
- Collaboration with Deptt. Of Agronomy, Soil Science and Horticulture for pest management of organic and natural farming
- Research collaboration with BARC
- Collaboration with IPFT, Delhi
- Student research collaboration with Tezpur University
- Student research collaboration with Agricultural University of Athens, Greece

YSPUHF, Solan

• Collaboration with Inter-institutional and Interdisciplinary Linkages:18 numbers institutes /KVKs

KAU, Thrissur

- TSP programmes were conducted in collaboration with Department of Agriculture, National Seed Corporation and Kudumbasree Mission, Government of Kerala.
- Large demonstration trial, "BIPM in rice" is being carried out with the support from the Department of Agriculture and Alathurgrama panchayat (Palakkad district).

NRRI

- ICAR-NRRI has been included as a centre in AICRP-Biocontrol during 2020-2021. We also made collaboration with ICAR-IIOR, Hyderabad and evaluated the entomopathogenic strains against rice insect pests and diseases. Collaboration was done within the institute i.e., with microbiologist of Crop Production Division developed a bio-agent against rice leaf folder and promoted for multi-location trail.
- With intra-institutional collaboration a project named "Bio-Bank" funded by RKVY-Odisha was run in the institute concentrating on macrobials and microbials for management of major insect and disease of rice.
| Sl. | Centres | Торіс | No of | No of | Village | Training |
|-----|---------|------------------------|---------|-----------|-----------|----------------|
| No | | | farmers | officials | covered | outcome |
| 1. | CPCRI | Sensitization | 4400 | 240 | 32 | Knowledge |
| | | campaign and | | | | empowerment |
| | | incursion | | | | and technology |
| | | management of | | | | transfer |
| | | exotic whitefly | | | | |
| | | complex | | | | |
| | | Bio-suppression of | 950 | 20 | 7 | Technology |
| | | black headed | | | | delivery and |
| | | caterpillar by release | | | | impact |
| | | of stage-specific | | | | assessment |
| | | parasitoids | 1 | | | |
| | | Palm health | 1560 | 100 | 45 | Knowledge |
| | | management | | | | empowerment |
| | | (Andhra Pradesh, | | | | & Technology |
| | | Nadu Karala) | | | | demonstration |
| | | Nauu, Kerala) | 050 | 25 | 25 | Woman |
| | | coconut rhinoceros | 930 | 23 | 23 | empowerment |
| | | beetle | | | | and technology |
| | | (Tamil Nadu Kerala) | | | | transfer |
| 2 | NCIPM | IPM in cotton | 200 | 3 | Bakainw | Awareness |
| | | | 200 | 5 | ala. | about whitefly |
| | | | | | Deewank | and natural |
| | | | | | hera, | enemies |
| | | | | | Hinduma | identification |
| | | | | | lkot, | and IPM in |
| | | | | | Haripura, | cotton |
| | | | | | Patrewal | |
| | | | | | a, | |
| | | | | | Nihalkhe | |
| | | | | | ra and | |
| | | | | | Chudiwal | |
| | | | | | aDhanna | |
| | | | | | in
E | |
| | | | | | Fazilka, | |
| | | | 50 | 4 | Punjab | |
| | | FAW in pearl millet | 50 | 4 | Bnarthna | |
| | | | | | Mahowa | |
| | | | | | Rlock of | |
| | | | | | DIOCK OI | |

					of	
					Etawah	
					district	
					UP	
		IPM in chickpea	50	1	Chokari,	Awareness
					Jhansi,	about
					UP	Pheromone
						trap use and
						Trichoderma
						seed treatment
		IPM in chickpea	50	2	Ragauli	Do
					village	
					Jalaun,	
					UP	
		IPM in chickpea	30	2	village	Do
					Satraju,	
					Jalaun	
					UP	
3.	UBKV,	Ecofriendly	60	4	Latapata,	Farmers
	Pundibari	management of			Mathabh	became aware
		insect pest in			anga-II	about non-
		vegetables and rice.			0	chemical pest
						management.
		Biological control of	160	1	Patiram,	Beekeeping
		pests and promotion			Dakshin	adapted
		of beekeeping			Dinaipur	·····I
		Field day on	60	1	Danshin	Awareness on
		beekeeping			Latabari.	beekeeping
					Nimati	6
					Forest	
					Alipurdu	
					ar	
		Biological control of	35	3	Ramsai	Control of
		crop pests	50	5	Ialnaigur	insect pests
		erop pests.			i	through
					1	biological
						approaches
		Cultivation practices	75	1	Nurnur	upprouches.
		of mustard through	15	1	Alipurdu	
		biological			ar	
		intervention and			u	
		heekeening				
		Deekeeping.	75		NTerror	
	1	Pests and disease	15	-	Nurpur,	

4.	PAU,	Mass production and utilization	-	5	i, Coochbe har -	• Upgradation
	NA	biocontrol agents (6- 7.3.2018)				• Skill development
		Mass production and utilizationofbiocontrolagents(6-7.9.2018)	-	3	-	(Trainings for Technical Staff)
		Mass production and utilization of tricho- cards in <i>kharif</i> crops (17.7.19)	-	3	-	
		Mass production of host insect and bioagents (4.3.2020)	-	4	-	
		Mass production of bioagents and their utilization for the management of major crop pests (2.3.2021)	-	5	-	
		Biological control of insect pests and diseases in organic rice (12.6.2018)	45	2	Villages of Sangrur district	 Increased awareness among farmers for
		Biological control of insect pests in rice and maize crop (1.8.2018)	45	2	Village Badowal (Hoshiar pur)	non-chemical methods of pest control and good
		Biological control of	25	3	Villages	agricultural

	insect pests			of	practices	
	(29.8.2018)			Ludhiana	• Technolog	gy
				district	adoption	
	Biocontrol of insect	22	2	Villages	(Trainings	for
	pests (30.8.2018)			of	farmers)	
				Kapurtha		
				la district		
	Management of	12	3	Village		
	insect pests through			Sahauli		
	bioagents			(Patiala)		
	(12.10.2018)					
	Identification and	15	2	Village		
	utilization of			Gunike		
	bioagents in pest			(Patiala)		
	management					
	(2.11.2018)					
	Promotion of	34	2	Villages		
	biological control of			of Moga		
	insect pests and			district		
	diseases					
	(21.11.2018)					
	Good Agricultural	25	3	Villages		
	practices in summer		-	of Patiala		
	moong (5.4.2019)			disrict		
	Good Agricultural	25	4	Villages		
	practices in summer			of		
	moong (8.4.2019)			Sangrur		
	(or (1201))			district		
	Biological control of	48	2	Villages		
	insect pests in <i>kharif</i>	10	_	of		
	crops (26.4.2019)			Hoshiarp		
				ur district		
	Good agricultural	67	4	Villages		
	practices in <i>basmati</i>	07		of		
	rice (30.5 2019)			Patiala		
				Sangur&		
				Ferozenii		
				r districts		
	Biological control of	25	1	Sarkaudi		
	insect pests in		·	(Sangrur)		
	organic <i>basmati</i> rice			(Sungrui)		
	(5.8.2019)					
	Utilization of	16	3	Kheri		
		10	5			

	bioagents for			Kalan
	management of			(Barnala)
	insect pests in <i>kharif</i>			
	crops (14.8.2019)			
	Biological control of	22	2	Bhadalw
	insect pests in kharif			ad
	crops (4.9.2019)			(Sangrur)
	Biological control of	45	2	Garhshan
	insect pests in			kar
	sugarcane			(Hoshiar
	(13.9.2019)			pur)
	Biological control of	22	1	Village
	insect pests in wheat			Biradwal
	(24.12.2019)			(Patiala)
	Biocontrol of insect	20	2	Village
	pests in kharif			Gunike
	crops(20.3.2020)			(Patiala)
	Insect pest	12	1	Birdwal
	management through			(Patiala)
	non-chemical			
	approaches			
	(26.6.2020)			
	Biocontrol on insect	10	2	Sakraudi
	pests in basmati rice			(Sangrur)
	(29.7.2020)			
	Biocontrol on insect	15	2	Dhira
	pests in rice			Patra
	(14.8.2020)			(Ferozep
				ur)
	Eco-friendly	23	3	Chaggran
	management of			(Hoshiar
	sugarcane borers			pur)
	through biocontrol			
	technology			
	(20.11.2020)			
	Biocontrol based	25	2	NeelaNal
	integrated pest			оуа
	management			(Hoshiar
	technology for insect			pur)
	pests (18.2.2021)			
	Management of	16	2	BhojoMa
	wheat insect pests by			jri
	using non-chemical			(Patiala)

		methods (8.3.2021)				
		Validation and	85	3	Garhshan	-
		dissemination of			kar	
		biocontrol based			(Hoshiar	
		technology in			pur)	
		sugarcane (9.3.2021)			1 /	
		Biocontrol of insect	45	2	Villages	-
		pests (1.10.2021)			of	
		I man ()			Faridkot	
					district	
		Biocontrol of insect	50	1	Villages	-
		pests (26 11 2021)	50	1	of	
		pests (20.11.2021)			Muktsar	
					Sahih	
					district	
		Biocontrol of insect	48	2	Villages	
		pests $(30, 11, 2021)$	10	2	of	
		pests (50.11.2021)			Faridkot	
					district	
		Biocontrol of insect	12	2	Villages	
		pasts (4.3,2022)	42	2	vinages	
		pests (4.3.2022)			Ferozenu	
					r district	
5	SKILAST	Biological Control of	20	5	20	Exposure
5.	Srinagar	insect pests of	20	5	20	Exposure
	, Si magai	cabbage				
		Ecological	20	10	20	Exposuro &
		ecological for	20	10	20	Exposure &
		engineering 101				awareness
		biological control of				
		biological control of				
		insect pests of				
		Dialogical control on	20	5	20	Awananaaa
		biological control an	20	3	20	Awareness
		important				
		Mass and dustion of	60	2	20	
		Mass production of	60	2	20	Skill training
		natural enemies and				
		their field				
		applications	50	2	20	
		Mass production	50	2	30	Skill training
		technique of natural				
		enemies and their				
		field applications in				

		brinjal and tomato				
		Demonstrations of	20	02	one	Demonstration
		natural enemies of				
		Brevicoryn				
		ebrassicae, Plutella				
		xylostella and Pieris				
		brassicae on kale				
		and cabbage				
		Trichogramma spp	20	02	one	Demonstration
		against tomato fruit				
		borer and shoot and				
		fruit borer of brinjal				
		Demonstration of	40	5	10	Skill training
		pheromone traps				
		Regular training on	20	10	10	Skill training
		the biological control				
		techniques				
		Awareness camp	60	04	05	Fruit borer
		Awareness camp	55	04	10	Apple blotch
						leaf miner
		Awareness camp	60	05	12	Apple blotch
						leaf miner
		Awareness camp and	40	08	13	Fruit borer
		trainings with line				
		departments in				
		incursion areas of				
		Baramulla				
6.	SKUAST	Awareness camp and	60	07	14	Apple blotch
	, Srinagar	trainings with line				leaf miner
		departments in				
		incursion areas of				
_	IIIID	Shopian	1.50	2		5
7.	IIHR	Biological control	150	3	4	Farmers got
		and Integrated Pest				benefited from
		management in				the training.
		Nursery and				
0	ממוו	vegetable crops	60	20	Vorant	Awararaa
δ.	IIKK	IPIVI awareness	00	20	Koraput	Awareness
		worksnop			region of	about use of
					ouisna (5	pheromones
					districts)	
						Irichocards

						and seed
						treatment
						PGPRs
		IPM awareness	20	2	Ibrahimp	Awareness on
		workshop			atnam	bund cropping
					telangana	benefits
						andreducing
						insecticides
9.	KAU,	Biopesticides for	25	5	Vilavoor	
	Vellayani	pest management in			kkal	
		coconut				
		Biopesticides for	25	5	Malayink	
		pest management in			eezhu	
		banana				
		Biopesticides for	25	4	Maranall	
		pest management in			oor	
		vegetables "				
		Biopesticides for	25	7	Malayink	
		pest management in			eezhu	
		banana				
		Potential of	25	9	Malayink	
		biocontrol agents in			eezhu	
		pest management				
10.	KAU,	Awareness	20	3	2	
	Kumarak	programme of use of				
	om	entomopathogenic				
		fungi and other				
		biological control				
		agents was				
		conducted at				
		Krishibhavan				
		Vazhoor, Kottayam				
		district on 3.3.21				
		Online Interface with	15	-	5	
		farmers at Vazhoor				
		block as part of				
		Prime Ministers				
		address to farmers				
		on 28.9.21				
11.	PJTSAU	Participated in seven	30	2	-	Farmers get
		Radio Talks on Bio				info. On
		Agents & Bio				biological
		Pesticides at All				control of crop

		India Radio,				pests
		Hyderabad during				
		August 2017.				
		2. Participated in	250	1	-	Farmers get
		Doordarshan Phone				info. On
		in Live Programme				biological
		and answered the				control of crop
		queries of farming				pests
		community on				
		Biological Control at				
		Doordarshan				
		Kendra, Hyerabad				
		during 2017				
		Participated in a	-	-	-	Farmers get
		phone-in-live				info. On
		programmes for				biological
		farmers on				control of crop
		20.08.2022 to				pests
		answer their queries				
		on TV TSAT				
1	CAU,	Integrated Pest	100	03	04	Tribal farmers
2	Pasighat	Management in			nearby	benefited with
2.		Horticultural			villages	higher crop
		Crops at CHF			of	yields due to
		Pasighat dated 23-25			Pasighat	application of
		March, 2019				Neem oil,
						Light Trap and
						quality
						vegetables
		Training Programme	30	-	03	Capacity
		on Bio-intensive			Jampanı	building
		Pest Management in			Oyan,	training helped
		Tomato and			Sille,	the Non tribal
		Cabbage at CHF			East	NEH farmers
		Pasighat dated 16 th			Siang	to aware and
		to 18 th February				usage of bio-
		2021				intensive IPM
						In Tomato and
						Cabbage in the
						place of
		Turining D	20		01	control alone
1	1	Training Programme	30	-	101	Capacity

	on 'Biological			Taki	building
	Control of Mustard			Lalung,	training helped
	and Maize Pests' at			East	the Tribal NEH
	Taki			Siang	farmers to
	Lalungvillageduring			0	aware and
	17 th to 19 th March				usage of bio-
	2021				intensive IPM
					in Mustard and
					Maizefor
					getting higher
					crop vields
	Five number of one	200	-	05	Tribal farmers
	day off-campus				especially from
	awareness cum			Jampani,	Nafra circle of
	inputs distribution			Taki	West Siang
	programmes to tribal			Lalung	was given with
	farmers at different			(East	awareness on
	villages (Feb-March.			Siang),	talc based bio-
	2021)			Ditchik,	pesticides
	2021)			Nachibon	which they
				&Lower	given feedback
				Dzoung,	as first of its
				Nafra	kind
				circle,	KIIIQ
				(West	
				Kameng)	
	Field day under FLD	25	-	01	Significantly
	on biological control			Yagrung	higher crop
	of insect pests of			Todeng	yield in
	mustard during 19 th			village	Rapeseed with
	Dec 2020.			(East	BIPM module
				Siang)	(9.36 q/ha)
					compared to
					farmers
					practice (6.44
					q/ha)
	Field day under FLD	35	-	01	Nontribal NEH
	on bio-intensive pest			Jampani	farmers were
	management in			village	demonstrated
	cabbage during 29 th			(East	with using
	Jan 2021			Siang)	BIPM
				0/	technology for
					economic
					Cabbage
					Cabbage

					production
	Field day under FLD	25	-	02	Tribal and
	on biocontrol based			Jampani	Nontribal NEH
	pest management in			&Sille	farmers were
	tomatoduring06 th			villages	demonstrated
	Feb 2021			(East	with using
				Siang)	BIPM
					technology for
					economic
					Tomato
					production
	Field day under FLD	15	-	01	Tribal NEH
	on biocontrol based			Berung	farmers were
	pest management in			village	demonstrated
	maizeduring31 st			(East	with using
	March 2021			Siang)	BIPM
				0,	technology for
					effective
					management of
					invasive pest
					FAW on Maize
	Nine number one	222	_	09	Tribal farmers
	day off-campus			GuneBal	especially from
	awareness cum			ek,Mire	ShiYomi
	inputs distribution			m,	district was
	programmes to tribal			Sikatode	given with
	farmers at different			& Taki	awareness on
	villages (April 2021-			Lalung	talc based bio-
	March, 2022)			(East	pesticides
				Siang),	which they
				Dechingt	given feedback
				ong,Seko	as first of its
				r,	kind
				Dorjeelin	
				g,	
				Ropum,	
				Lungte	
				(ShiYom	
				i)	
	Two number one day	64	-	02	Benefitted
	on-campus			Dambuk	Citrus growing
	awareness cum			(Lower	farmers from
	inputs distribution			Dibang	Dambuk which
	1			-	

	programmes to tribal farmers at CHF Pasighat (29 th Oct 2021 and 11 th Dec 2021)			Valley) &Mebo (East Siang)	is known for export quality of Khasi Mandarin
	Seven number one day off-campus awareness cum inputs distribution programmes to tribal farmers at different villages (April 2022- December, 2022)	185	-	07 Berung, Mongku, Ayeng villages (East Siang) Padu village (Upper Siang), Riga (Siang), Ziro (Lower Subansiri), Nongkho n (Namsai)	Promoted the organic production of export quality Kiwi among 50 tribal farmers of Ziro valley, Lower Subansiri by distributing microbial pesticides
	FLDonBIPMmoduleforFAWmanagementinMaize	10	-	01 Tulap village (East Siang)	Effective management of invasive pest FAW on Maize
	Awareness cum Biocontrol Inputs Distribution Programme to Non Tribal Farmers under NBAIR-NEH Component during 03 rd Sep 2022	34	-	01 Jampani (East Siang)	Prompted Organic production of Vegetables
	FLD Programme on BIPM in Okra	05	-	02 Jampani &Tulap villages (East	Demonstrated the economic production of Okra

					Siang)	
		ELD Drogramma on	10		Dialig)	Demonstrated
		FLD Programme on	10	-	05	Demonstrated
		BIPM in Rice			Mirem,	BIPM in Paddy
					Bodak	
					&Sille	
					villages	
					(East	
					Siang)	
		FLD Programme on	10	-	02	Demonstrated
		BIPM in Brinjal			Jampani	the economic
					&Tulap	production of
					villages	Brinjal
					(East	
					Siang)	
13.	MPKV	Agro Technology	more			Scientists
		Exhibition was	than 500			provided the
		organized by AC				information of
		pune				Bioagent and
		-				Biopesticide
		Mass production of	80	3		Mass
		bioagents				production of
						bioagents
		Ago Technology	more			The Scientists
		Exhibition	than 400			and students
			farmers			provided the
						information on
						Bio-agents and
						Bionesticide to
						the Dignitaries
						and farmers
15	MDIAT	Three former	150		2	Technology
15.	Udainur	trainings were	150		2	delivery and
	Ouaipui	conducted on formers				knowledge
		field at Veermann and				Kilowieuge
		Diladar willages of				empowerment
		r nauer vinages of				
		Jaisamand for				
		awareness of bio-				
		control and conserve				
		the natural enemies				
		populations				** • •
		Three farmer's	Non-TSP		11	Knowledge
		training were	Area246			empowerment
		conducted at farmers				& Technology

		field in different	TSP-			demonstration
		villages and to aware	Area			
		the farmers for	234			
		biological control of				
		crop pests in Kharif				
		and Rabi seasons				
		2019-20.				
		Two farmer's	192		4	Women
		training were				empowerment
		conducted at farmers				and technology
		field in different				transfer
		villages and two				
		trainings were				
		conducted at RCA,				
		Udaipur (On-				
		Campus) to aware				
		the farmers for				
		biological control of				
		crop pests in Kharif				
		and Rabi seasons				
		2020-21.				
16.	TNAU	Farmers day –	Above	12	Villages	Awareness on
		Exhibition 9.02.18	300		in Coimhat	biological
		allu 10.02.10			ore	control
		Management of	Above	35	Villages	Awareness on
		Rugose spiralling	100		in	biological
		white fly 31.08.18	Farmers		Coimbat	control
		-	grievanc		ore	
			e day			
		Rugose spiralling	25	3	Valukku	Awareness on
		white fly and maize			parai	biological
		fall armyworm			block	control
		awareness campaign				
		16.11.18				
		Maize fall	45	3	Udumalp	Awareness on
		armyworm			et block	FAW
		awareness campaign				mangement
		19.11.18				
		Maize fall	25	3	Poonachi	Awareness on
		armyworm			block	FAW
		awareness campaign				mangement
		30.11.18				
		Rugose spiralling	25	3	Karamad	Awareness on

	white fly and maize			ai	biological	
	fall armyworm				control	
	awareness campaign					
	8.2.19					
	Rugose spiralling	25	3	Namakka	Awareness	on
	white fly awareness			1	biological	
	campaign 11.3.19				control	
	Rugose spiralling	35	2	Kinathuk	Awareness	on
	white fly and maize			adavu	biological	
	fall armyworm-				control	
	awareness campaign					
	27.5.19					
	Cassava mealy bug –	23	4	Edapadi	Awareness	on
	Release of				biological	
	parasitoids –				control	
	Demonstration					
	06.09.19					
	Coconut rugose	25	3	Thippam	Awareness	on
	spiralling whitefly -			patty -	biological	
	Field demonstration			Pollachi	control	
	of IPM packages					
	24.09.19					
	Awareness campaign	30	3	Valavadi	Awareness	on
	on fall armyworm –				biological	
	RAWE				control	
	students25.09.19					
	Coconut rugose	55	5	Kalangal,	Awareness	on
	spiralling whitefly -			Sulur	biological	
	Field demonstration				control	
	of IPM packages					
	26.11.19					
	Awareness campaign	35	3	Kosavam	Awareness	on
	- Coconut rugose			palayam,	biological	
	spiralling whitefly -			Sengoda	control	
	11.12.19			mpalaya		
				m,		
				Mulakara		
				i		
	Awareness campaign	35	3	Kovilpud	Awareness	on
	- Coconut rugose			ur,	biological	
	spiralling whitefly			Madachu	control	
	18.01.20			r,		
				Karapadi		

		Awareness seminar -	20	2	Pichanda	Awareness on
		Coconut rugose			mpalaya	biological
		spiralling whitefly			m	control
		23.01.20				
		Management of	29	2	Sattakkal	Awareness on
		Rugose spiralling			pudur	biological
		whitefly in coconut			-	control
		17.02.21				
		Management of	200	12	Ambara	Awareness on
		Coconut Rugose			mpalaya	biological
		spiralling whitefly –			m -	control
		ATMA training			Sungam	
		16.09.21				
		Management of	50	3	Idikarai	Awareness on
		Coconut Rugose				biological
		spiralling whitefly –				control
		ATMA training				
		24.09.21				
		Management of	29	4	Kundada	Awareness on
		Rugose Spiralling			m,	biological
		Whitefly 21.01.22			Tirupur	control
					Dt.	
		Management of	25	2	Kannaku	Awareness on
		Rugose Spiralling			richi,	biological
		Whitefly 25.01.22			salem dt	control
		Management of	40	4	Palakkar	Awareness on
		Rugose Spiralling			ai, Erode	biological
		Whitefly 09.03.22			Dt.	control
		Management of	105	8	Uchipuli,	Awareness on
		Rugose Spiralling			Ramanat	biological
		Whitefly 11.03.22			hapralm	control
					Dt	
		Management of	43	3	Thondam	Awareness on
		Rugose Spiralling			uthur,	biological
		Whitefly 15.03.22			Coimbat	control
					ore Dt.	
17.	OUAT	Popularrisation of	100	3	Haladiku	Farmers were
		use of biocontrol		(29/03/2	ndi,	able to identify
		agents in		022)	Dolpashi	the damaged
		management of			and	symptoms
		insect pests of			Kharatan	caused by the
		sugarcane			gara of	pests and know
		(TSP)			Kankada	how to fix

					hada block of Dhenkan al	/release bioagents	of
					districts		
		Biological nest	20	2	KVK IC		
		control in field crops	20	$\frac{2}{(23/11/2)}$	AR-		
		and vegetable crops		(23/11/2)	CIFA K		
		DR. T. Samal		022)	HURDA		
					DISTRIC		
					Т		
18.	ANGRA	Biointensive pest	29	5	2	Farmers	
	U	management in				adopted	
		organic cultivation				Biocontrol	
		of rice, Rajmah and					
		Ginger at Koyyuru,					
		Visakhapatnam					
		district on					
		30.10.2017					
		Biointensive pest	30	6	3	Farmers	
		management in				adopted	
		organic cultivation				Biocontrol	
		of rice, Rajmah and					
		Ginger at Asarada,					
		Chinthapalli on					
		22.11.2017					
		Biointensive pest	30	6	3	Farmers	
		management in				adopted	
		organic cultivation				Biocontrol	
		of rice, Rajmah and					
		Ginger at Asarada,					
		Chinthapalli on					
		Vittana Mitra	30	3	10	Farmers	
		Training programme	50	5	10	motivated	
		and delivered lecture				motivated	
		on Seed safety					
		storage and					
		protection from pests					
		and diseases in rice.					
		pulses and oilseeds					
		at RARS, Anakapalle					
		on on 23.6.17.					

	Vittanamitra	40	4	15	Farmers
	programme on				motivated
	6.11.17 and				
	imparted training on				
	Red gram, Green				
	gram, Black gram,				
	Horse gram, cowpea-				
	Major pest problems				
	and control measures				
	at Chodavaram.				
	Visakhapatnam				
	district				
	Training cum	60	8	10	Demonstrated
	demonstration on	00	0	10	rhinoceros
	cocoput IDM of				baatla
	Covindenuram				management in
	villago				management m
	Village,				cocont orchards
	Vizialiagaralli districtor 20,11,17				•
		15	1	1	F
	I richocard	15	1	1	Farmers
	production using Eri				motivated and
	silkworm eggs and				initiated
	Corcyra eggs for				Trichocard
	farmers from				production at
	Asarada, GK				Asarada village
	veedhimandal,				
	Chinthapalli on				
	15.3.18				
	Vittana Mitra	30	3	10	Farmers
	Training programme				motivated
	and delivered lecture				
	on Seed safety,				
	storage and				
	protection from pests				
	and diseases in rice,				
	pulses and oilseeds				
	at RARS, Anakapalle				
	on on 23.6.17.				
	Training programme	25	5	25	Extension staff
	to MPEO's				motivated
	organized at by				
	Scientist, Extension				
	and Delivered talk on				
	and Derivered tank on				

	Biological control of				
	pests in sugarcane on				
	1/1 12 18				
	MPFO's Training	25	Δ	25	Extension staff
	programme	20	т 	25	motivated
	organized by $\Delta D\Delta$				motivated
	Cheenurunalli at				
	Cheepurupalli on				
	22.12.18 and				
	interacted on present				
	status of fall				
	armyworm in maize				
	in cheepurupalli				
	division and				
	monogomont				
	nractices adopted in				
	rahi maiza				
	Vocational training	20	1	20	Motivated
	programma on	50	4	30	formars
	Friends of coconut				mage
	tree and interacted				nraduction
	with coconut farmers				production
	on rugogo whitefly				
	damaga				
	and management at				
	KVK,				
	Alliaualavalasa Oli				
	2.2.19.	20	16	20	Created
	Conserving soll	30	10	50	Created
	biomeeticides in most				awareness
	biopesticides in pest				
	management on				
	5.1.2019	25	4	25	Currente d
	Orientation district	25	4	25	Created
	level training				awareness to
	programme to				FPO's and
	Deat Identification				Tarmers
	rest Identification				
	and management				
	auring training				
	programme on				
	production				
	technology of pulses				

	under APRIGP				
	programme				
	funded by SERP at				
	RARS Anakanalle				
	on 7.1.10				
	011 /.1.19.	20	4	1	
	BIPM in vegetables	30	4	1	Diffused
	at Marripalem, GK				Bioagents in
	Veedhimandal,				Demonstration
	Visakhapatnam				S
	district on				
	25.2.2020				
	BIPM in vegetables	32	2	1	Utilised
	at Kothapalem,				Bioagents in
	Lambasingimandal,				Demonstration
	Visakhapatnam				S
	district on				
	10.12.2020				
	BIPM in rice, ginger,	25	5	2	Utilised
	turmeric, vegetables				Bioagents in
	at Kollaput –				Demonstration
	Kothavalasa ,				S
	Dumbrigudamandal				
	on 17.12.2020				
	BIPM in rice, ginger,	40	2	18	Utilised
	turmeric, vegetables				Bioagents in
	at Killoguda,				Demonstration
	Dumbrigudamandal				S
	on 27.8. 2021				
	BIPM in rice, ginger.	65	5	13	Utilised
	turmeric. vegetables		-		Bioagents in
	at Sovva				Demonstration
	Dumbrigudamandal				s
	on 21 12 2021				5
	Ecological	120	5		Awareness to
	engineering to	120	5		Extension staff
	ADA'a Ao'a of				Extension stan
	ADA S, AO S OI				
	A griculture				
	Agriculture,				
	visaknapatnam at				
	FIC, Anakapalle on				
	18.11.2019 for YSR				
	Polambadi				
	programme.				

		100	-		A
	Training programme	120	5		Awraeness to
	on Biological control				extension staff
	agents (parasites,				
	predators, fungi,				
	bacteria) in pest				
	management to				
	ADA's, Ao's of				
	Department of				
	Agriculture,				
	Vizianagaram on				
	03.01.2020 for YSR				
	Polambadi				
	programme.				
	Pink bollworm	50	3	2	Conducted
	management in				demonstration
	cotton farmers				of pink boll
	training programme				worm
	organised by				management
	Daattcentre,				with
	Vizianagaram on				Trichocards in
	16.09.2019 at Piridi,				5 acres area.
	Bobbillimandal,				
	Vizinagaram district,				
	gave lecture on				
	Cotton pink				
	bollworm worm				
	identification,				
	damage and				
	management				
	practices.				
	Awareness	50	3	2	Awareness to
	programme on	20	5	-	farmers
	Biocontrol agents				
	and Biopesticides				
	production at RARS				
	Anakanalle on				
	23 11 2019				
	Training programme	30	2	30	Awareness to
	conducted on paddy	50	2	50	farmers
	nulses raimash for				14111015
	the Master Trainer				
	farmers				
	12.12.2019 at				

	Anakapalle					
	Skill training to	25	2	25	Hands c	on
	Rural Youth (STRY)				training	
	on "Preparation of					
	Bio fungicides and					
	Bio pesticides" on					
	13.2.20					
	Farmers training	30	4	30	Created	
	programme on the				awareness	
	occasion of World					
	soil day on					
	05.12.2020 at RARS,					
	Anakapallle,					
	imparted training on					
	Conserving soil					
	biodiversity using					
	biopesticides in pest					
	management					
	Farmers Awareness	60	3	20	Created	
	Programme on				awareness o	on
	Climate, Weather				Biocontrol	
	and Crops to the					
	Farmers of North					
	Coastal Zone					
	12.2.2020					
	Master trainers	30	3	30	Created	
	training on single				awareness	
	node seedling					
	technology in					
	sugarcane 13.3.2020					
	at RARS, Anakapalle					
	Role of	455	1	455	Organic	
	Biopesticides and				farming	
	Biocontrol agents in				certificate	
	Organic farming"				course given t	to
	in Distance learning				participants	
	course on Organic				under	
	farming on				ANGRAU	
	26.9.2020					
	Dr. YSR Polambadi	120	4	120	Stake holder	rs
	District workshop				gained	
	meeting organized				knowledge o	on
	by JDA,				biocontrol	

	$V_{1}^{2} = 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1$				
	visaknapatnam at				
	Farmers Training				
	Centre, Anakapallle				
	on 12.10.2021 and				
	discussed on				
	implementation of				
	pest management				
	with biological				
	control in organic				
	farming in the				
	district				
	Role of	175	1	175	Organic
	Biopesticides and				farming
	Biocontrol agents in				certificate
	Organic farming"				course given to
	in Distance learning				participants
	course on Organic				under
	farming on. 2021				ANGRAU
	Short course on	80	4		Gave lecture
	Organic farming in	agricultu	•		on Integrated
	Practice organised by	re			nest
	Regional	faculty			management in
	Agricultural	ideality			organic
	Agricultural Desceration				oultivotion
	Chinthonalli				cultivation
	ANGDAU during				
	ANORAU during				
	21.10.21 to				
	1.11.2021	100	2	25	
	Awareness	100	3	25	Motivated on
	programme on				Biocontrol
	Biological				agents
	control for farmers				production
	of Srikakulam,				
	Vizianagaram,				
	Visakhapatnam				
	districts for adopting				
	biological control in				
	rice, maize				
	on 29.11.2021.				
	Training programme	50	3	1	Motivated for
	on management of				adoption of
	maize fall army				demonstration
	worm				on management

	to maize farmers at				of maize FAW
	Thatithuru village,				in 20 acres.
	Bheemilimandal				
	Visakhapatnam				
	districts on				
	31.01.2022.				
	Awareness	100	9	4	Motivated for
	programme on				adoption of
	Biological control in				demonstration
	coconut to				on management
	coconut farmers at				of coconut
	Govindapauram,				rugose
	Pusapatiregamandal,				spirallying
	Vizianagaram district				whitefly in 50
	on 19.02.2022				acres.
	BIPM in Rice,	112	4	6	Adoption in
	Rajmah, Ginger at				demonstrations
	Asarada, GK				
	Veedhimandal				
	during Kharif &				
	rabi, 2017 -18				
	BIPM in Rice,	78	2	5	Adoption in
	Rajmah, Turmeric at				demonstrations
	Kothavalsa,				
	Dumbrigudamandal				
	during 2018-19				
	BIPM in Rice,	63	5	3	Adoption in
	Ginger, Turmeric at				demonstrations
	Aratichetlaveedhi,				
	GKveedhimandal				
	during 2018-19				
	Biointensive pest	30	2	3	Adoption in
	management in				demonstrations
	vegetables at				
	Marripalem,				
	GKVeedhimandal in				
	2019-20				
	Biointensive pest	32	2	1	Adoption in
	management in				demonstrations
	vegetables at				
	Kothapalem,				
	Lambasingimandal				
	in 2020-21				

		BIPM in rice,	25	2	1	Adoption in
		Ginger, Turmeric,				demonstrations
		vegetable at				
		Kollaput.				
		Dumbrigudamandal				
		during 2020-21				
		BIPM in rice	40	2	18	Adoption in
		Ginger Turmeric	10	2	10	demonstrations
		vegetable at				demonstrations
		Killoguda				
		Dumbriqudamandal				
		during 2020-21				
		BIDM in rice	65	5	12	Adoption in
		Cincer vegetable at	05	5	15	Adoption III
		Ginger, vegetable at				demonstrations
		Suvva,				
		during 2020 21				
10	ΛΛΙΙ	Earmara maat and	61		Doloro	Significant
19.	AAU,	input distribution	04		Dolala, Kotosvo	raduction (55
	Ananu	mput distribution			Natasva	$\frac{1}{60\%}$
		TSD gradie at			II, Minn a na	oo%) in pest
		ISP project			Vilpole, Catadi	allu ulsease
		Leasting VVV			Galadi,	With $10-$
		Location – KVK,			Uccham	15% increase in
		Navsari Agricultural			ala,	the fruit yield.
		University (NAU),			Degama	
		Vyara, Dist. Tapi,				
		Gujarat Date:				
		12/02/2018	50		D 1	
		Farmers meet and	50		Ruvab	There was a
		input distribution			arı,	significant
		programme under the			Thoya	reduction (65-
		TSP project			ni,	70%) in
					Nanim	incidence of
		Location –Tribal			angoy,	<i>Fusarium</i> wilt
		Research cum			Beyna	and <i>H.armigera</i>
		Training Centre,			Agara	and 12-15%
		AAU, Devagadh				higher yield
		Baria, Dist. Dahod,				was recorded
		Gujarat				
		Date: 23/03/2018				
		Farmers meet and	70		Dediyapa	Significant
		input distribution			daand	reduction (15-
		programme under the			Sagbara	20%) in use of

	TSP project		tehsils of	chemical
	Location – KVK,		Narmada	pesticides was
	Navsari Agricultural		district	recorded.
	University (NAU),			Increase in
	Dediapada, Dist.			yield 8-10 %
	Narmada, Gujarat	100	 Bujetha,	-
	Date: 04/10/2018		Limpura	
	19/11/2018		Talvpura,	
	02/03/2019		Aambaliy	
			a	
		100	 Timbapa	
			da	
			Pansar.	
			Alamaval	
			i	
			PiplaKan	
			kal	
			Panuda N	
			ivalda	
	Farmers meet and	100	 Tilipala	Significant
	input distribution	100	Alamava	reduction (35-
	programme under the		di Garda	40%) in use of
	TSP project		Nivalda	chemical
	Location – KVK		Tanda	pesticides was
	Navsari Agricultural		Pinla	recorded
	University (NAU)		Pansar	Increase in
	Dedianada Dist		Timbana	vield 10-12%
	Narmada Guiarat		da	yield 10 12/0
	Date: 19-07-2019		Danuda	
	Earmers meet and	100	 Nivalda	Significant
	input distribution	100	 Tilinada	reduction (20-
	programme under the		1 mpaua Δlamava	25% in use of
	TSP project		di Tanda	chemical
	ISI project		ui. Tapua Soliya	nesticides was
	Location KVK		Sonya, Kanial	recorded
	Noveri Agricultural		Nalya Na	Increase in
	University (NAU)		nibedyan	vield 8 10 %
	Dedianada Dist		Navagam	yiciu 0-10 70
	Narmada Cujarat		Mandala	
	D_{2} Date: 10-08 2010		Dinla Dan	
	Date. 17-00-2017		r ipia,r all	
			sai, Dilaip	
			ur, Kankal	
			a,Pipla,K	

			ojghat,Na ni, dor Amba, Almavali	
	Farmers meet and input distribution programme under the TSP project Location – KVK, Navsari Agricultural University (NAU), Dediapada, Dist. Narmada, Gujarat Date: 29-09-2020	50	 Karatha, Rajpipla Sanjroli, Guvar Tankari, Kothara Timrva,K areli Vanji,Gul vani Vagrali,J etpur Haripura	Significant reduction (25- 30%) in use of chemical pesticides
	Farmers meet and input distribution programme under the TSP project Location – KVK, Navsari Agricultural University (NAU), Dediapada,Dist. Narmada, Gujarat Date: 09-03-2021 16-03-21	25	 Samariya ,Naniraval, Sengpura, Sakva, Bhilvasi, Moti Raval, Nava Vaghpura MotaAam ba, Surjvad, Bhandra,G uvar Sanjroli, Karatha Tankari, Kothar Ammali, Vavdi Pratappu ra.Sakdi	Significant reduction (20- 25%) in use of chemical pesticides was recorded.

		50	 Navagam	
			,Nani	
			singlodi,	
			Tmbapad	
			a,	
			Kaltar,Be	
			bar	
			Jadoli,Ch	
			ikda	
			Khurdi,C	
			hamba	
			Chikda,K	
			unbar	
			Jambar,V	
			alpada	
	Farmers meet and	25	 Soliva.M	Significant
	input distribution	-	ohabhi	reduction (25-
	programme under the		Kham.Al	30%) in use of
	TSP project		mavadi	chemical
	1 5		Nigat,Bar	pesticides was
	Location – KVK,		san	recorded.
	Navsari Agricultural		Guldacha	-
	University (NAU),		m,Didiya	-
	Dediapada,Dist.		pada	
	Narmada, Gujarat		Vedchha,	
			Taval	
	Date: 28-10-2021		Nani	
	22-02-22		bedva	
	15-03-22		Navagam	
			, Gajar	
			gota,Aajn	
			ai	
			Timba	
			pada	
			Nana	
			,Suka	
			amba	
			Khokhara	
			umer	
			Sorapada	
			Aalamav	
			adi	
			Gurnumb	

					ar Khodaaa mba Chikda	
			25		Khokhara umar Navagam Saburi Dabaka Jaragam	
			25		Aabhalo d Singapur Sanjeli Motihan di	
20.	DrYSRH U, Tirupathi	FieldDayonProductionandProtectionTechnologiesinCitrus (Sweet orangeand Acid lime)"	52	3	D. B, Palli Gudipala mandal	Exposure to new varieties for area expansion
		Production and Protection Technologies in Acid lime on 09-06-2017	35	2	Chagana m village of Sydapura m Mandal, Nellore District	Latest pest management practices
		FarmersProducerOrganization (FPOs)& TomatoValueChainInterventionon 23^{rd} & 24^{th}	60	5	Madanap alli	Tomato pinworm – identification, and management

		October, 2018				
21.	AAU,	Pest Management in	30	02	Hatkhola	They became
	Jorhat	organic Agriculture			Village,	aware about
		(Rice, toria, pea,			Chabua	biological
		potato and				control agents
		vegetable)				
		Awareness	30	02	Koronga	They became
		programme by			Holowga	aware about
		Deptt. of Extension			on	biological
		Education, AAU,			primary	control agents
		Jorhat			school	C
		BIPM on Rice (2	51&30	1& 4	Matikhua	They became
		training)			Gaon &	aware about
					DAO,	advantages of
					Golaghat	BIPM rice
		BIPM on Kharif	50, 50 &	2, 1 & 1	Dangdho	They became
		vegatables (3 nos)	50	, ,	ra,	aware about
					Neulgaon	advantages of
					, Jorhat	BIPM on
					&	Kharif
					Chaudan	vegetable
					gpothar,	
					Golaghat	
		Farmers and	42	01	Alengmo	They learned
		Community Training			ra	about pests of
		on Crowd Sourcing				rice and
		Experiment				biological
		-				control agents
		BIPM on vegetables	40,48, 47	1, 2,1 &1	Dangdho	They became
		crops (4 nos)	&40		ra,	aware about
					Kachuma	advantages of
					ri,	BIPM on
					Garigaon	vegetables.
					Golaghat	_
					&	
					Salaguri,	
					Jorhat	
		BIPM on Rice (2	40&40	1 &1	Hahsora,	They became
		nos)			Golaghat	aware about
					&Titabar	advantages of
					, Jorhat	BIPM on rice.
		Biological control of	40,40,40	1,1,1,1,1	Alengmo	They became
		pests of vegetables	30,30,32,	1,2 &1	ra,	aware on pests
		~				

	(8 nos)	25 & 25		Lahonko	and
				charigao	management of
				n,	pests of rabi
				Chekuria	vegetables.
				,	_
				Salaguri	
				Mazgaon	
				Jorhat,	
				Bohuabh	
				eti,Bamu	
				ngaon,	
				Nagaon,	
				Borjanga	
				on,	
				&2.no	
				Butulikh	
				uagaon,	
				Golaghat	
	BIPM of Rice (7nos)	25,25,25,	1,1,1,1,1	Baghmor	They became
		25,25,30	&1	a,	aware on pests
		& 25		Charigho	and Bio
				ria,Karen	intensive
				gsapori,	management of
				Nogabaat	pests of rice.
				,	
				Salaguri,	
				Jorhat,	
				Simolugu	
				ri,	
				Nagaon&	
				2 no.	
				TirualGa	
				on,Golag	
				hat	
	BIPM on Vegetables	25,25,26,	1,1,1,1,1,	Na-	They became
	(7 nos)	25,25,25,	1,5&1	cheleria,	aware of BIPM
		25 &33		Rajabaha	on Vegetables.
				r,Baghm	
				ora,	
				Charigho	
				ria,,Jorha	
				t, Tirual	
				Gaon,	

					Bonkuwa	
					lGaon,Bo	
					kakhat,	
					Golaghat	
					&Sensua	
					gaon,	
					Nagaon	
22.	YSPUHF	.Total number of	25	3	Villages	Capacity
	, Solan	training camps			in and	building
		organised:	25	2	around	Awareness on
		ii. Post graduate			the solan	Biocontrol
		students guided:	25	5	district	
		Undergraduate				
		students guided:25	2335	2		
		Numbers of farmers				
		awarded / trained:	16	3		
		vii. Scientist				
		participated in	30	4		
		trainings				
		SMS participated in	30	2		
		trainings:				
		No. of input dealers				
		participated in				
		lecture				
23.	GBPUA	Use of Biocontrol	70	0	Dumkaba	Capacity
	Т	agents in Rice			ngar	building
		Setting up of soil	85	1	Halducha	amongst the
		solarization			ur	farmers for the
		Seed treatment with	40	0	Nathupur	use of
		Bioagents			-	Bioagents in
		Seed treatment of	55	0	Motahald	transplanted
		Pea with Bioagents			u	and non
		Use of Pheromone	50	2	Dumkaba	transplanted
		trap in Rice			ngar	crops and
		Use of Pheromone	30	0	Nathupur	adoption of
		trap in Rice			1	Biocontrol
		Soil solarization of	75	0	Davlamal	technology at
		tomato Nursery			la	their farm
		Use of Biocontrol	80	1	Golapar	
		agent for seed			-	
		treatment, soil				
		treatment, seedling				

	treatment in Tomato				
	Introduction of	75	0	Vijavram	
	Bioagents to farmers		-	pura	
	Implementation of	125	0	Vijavram	
	CMP in vegetables	120	0	nura	
	Use of Biocontrol	170	0	Vijavram	By the use of
	agents in Rice	170	0	nura	Biointensive
	Introduction of	120	0	Pula Sootpuri	disaasa
	Diagonta to formara	120	0	Seetpull	managamant
	Dioagenits to farmers	200	1	G ('	management
	Pea cultivation under	200	1	Seetpuri	fractices
	Biological control	1.67	0	<i>a</i>	farmers are
	Introduction of	165	0	Seetpuri	now able to
	vegetable cultivation				reduce their
	Seed treatment with	45	0	Dumkaba	cost of
	Bioagent			ngar	production due
	Seed treatment with	30	0	Jaggiban	to lower doses
	Bioagent			gar	of
	Use of Trichoderma	25	0	Haripur	Agrochemicals
	Biocontrol agents for	40	1	Dhanpur	
	nursery management				
	Seedling treatment of	70	0	Radheyp	
	rice with Bioagent			ur	
	Enrichment of	45	0	Umapati	
	Compost with			1	
	Bioagent				
	Use of PBAT 3 in	75	0	Nathupur	
	rice		-	- ······· P -·-	
	Trichoderma for	95	1	Devlamal	
	tomato cultivation	20	1	la	
	PRAT 3 for tomato	25	1	Kuwarnu	
	cultivation	23	1	r	
	Trichoderma for	22	0	1 Devlatall	
	tomate cultivation		0	Deviatali	
		(0)	0		
	Use of Biocontrol	60	0	Snivpuri	
	agents	00		0	
	Use of Bioagents in	80	0	Seem	
	vegetables			~	
	Trichoderma in rice	45	0	Gangapur	
	cultivation				
	Bioagents for rice	55	0	Dhanpur	
	cultivation				
	Use of Bioagents in	60	0	Dumkaba	
	standing crops			nger	

Trichoderma for	25	0	Motahald
protected cultivation			u
Seed treatment of	30	0	Dina
rice with PBAT 3			
Utilization of	40	0	Paskarpur
Trichoderma for			
value addition of			
vermicompost			
Seed treatment in pea	55	0	Bakulia
with Bioagents			
Trichoderma for seed	70	0	Sakulia
treatment in chickpea			
Utilization of	45	0	Dumkaba
Trichoderma for			ngar
value addition of			
vermicompost			
Seed treatment of	70	0	Halducha
rice with PBAT 3			ur
Bioagents for rice	75	0	Nathupur
cultivation			
Introduction of	40	0	Motahald
Bioagents to farmers			u
Trichoderma for seed	32	0	Dumkaba
treatment in chickpea			ngar
Seed treatment of	23	0	Nathupur
rice with PBAT 3			
Bioagents for rice	85	0	Davlamal
cultivation			la
Utilization of	154	0	Golapar
Trichoderma for			
value addition of			
vermicompost			
Trichoderma for seed	145	0	Vijayram
treatment in chickpea			pura
Seed treatment of	55	0	Dhanpur
rice with PBAT 3			
Trichoderma for seed	23	0	Radheyp
treatment in chickpea			ur
Seed treatment of	45	0	Umapati
rice with PBAT 3			
Utilization of	25	0	Nathupur
Trichoderma for			
value addition of			

		vermicompost				
		Bioagents for rice	114	0	Devlamal	
		cultivation			la	
		Trichoderma for	45	0	Kuwarpu	
		protected cultivation			r	
		Utilization of	87	0	Devlatall	
		Trichoderma for			а	
		value addition of				
		vermicompost				
24.	DrYSRH	Mass production of	20	5	5	Successfully
	U-HRS	Isaria fumosorosea			Villages	Imparted hands
		NBAIR pfu 5 for the			of	on training on
		management of			Srikakula	low cost mass
		Rugose spiralling			m district	production of <i>I</i> .
		whitefly				fumasorosea to
						the farmers
		Mass production of	20	5	7	Successfully
		Isaria fumosorosea			Villages	Imparted hands
		NBAIR pfu 5 for the			of East	on training on
		management of			godavari	low cost mass
		Rugose spiralling			district	production of <i>I</i> .
		whitefly				fumasorosea to
						the farmers
		Method	20	4	Gangalak	Successfully
		demonstrations on			urru	Imparted hands
		entomo pathogenic			village	on training on
		fungus (Isaria				low cost mass
		fumosorosea				production of <i>I</i> .
		NBAIR pfu 5)spray				fumasorosea to
		against Rugose				the farmers
		spiralling whitefly				
		on coconut				
		Method	50	4	Aividi	Adoption of
		demonstrations on			village	bio control
		management				based
		practices which				recommendatio
		included application				n for
		of Biocontrol agent				management of
		Trichoderma reesei				stem bleeding
		cake on stem				in coconut
		bleeding infected				
		portion. Basal				
		application of <i>T</i> .				

	reesei @ 50gm nlus				
	5kg neem cake per				
	nalm as soil				
	application in basins				
	of coconut palm				
	Method	50	6	Mamidik	Adoption of
	demonstrations on	20	0	uduru	bio control
	management of				based
	coconut stem				recommendatio
	bleeding disease				n for
	management with				management of
	the T. reesei				stem bleeding
					in coconut
	Method	100	6	Mamidik	Installation and
	demonstration on			uduru	advantages of
	maintenance of drip				drip irrigation
	irrigation in Coconut				system in
	and Cocoa.				coconut
	Method	50	6	Mamidik	Management of
	demonstration on			uduru	stem bleeding
	coconut stem				of coconut
	bleeding				
	management.				
	Method	100	6	Mamidik	Demonstration
	demonstration of			uduru	of Biocontrol
	Biocontrol				management of
	management of				Rugose
	Rugose spiralling				spiralling
	whitefly in coconut.				whitefly in
	Method	100	6	Mamidik	coconut
	demonstration on			uduru	
	spraying of <i>isaria</i> on				
	rugose spiraling				
	whitefly infested				
	coconut orchards.				
	one day Training	50	10	Departm	Predator
	Programme on	members		ent of	Rearing
	"Predator Rearing			Horticult	Technique
	Technique			ure	(Apterochrysa
	(Apterochrysa			officials,	astur)"
	astur)"			VHAs,	
				FPO	
				members	
				1	
--	---------------------	---------	----	-----------------	-----------------
				and	
				progressi	
				ve	
				farmers	
				of East	
				Godavari	
	Field Demonstration	100-150	10	Departm	field
	on farm	members	10	ent of	Demonstration
	machanization	memoers		Horticult	on form
	mechanization			monicult	
				ure	inechanization
				officials,	in coconut
				VHAs,	harvesting,
				FPO	climbing and
				members	value addition
				and	to the farmers
				progressi	
				ve	
				farmers	
				of East	
				Godavari	
	Kisan mela	150	25	Scientiste	Explained
		100		s of	about the
				APRRI &	coconut
				RARS	production and
				Morutoru	production and
				Λ N C D	tachnologias
				A.N.U.K.	technologies
	2 1 (1)		10	A.U.	~ 1
	Oneday "Awareness	65	10	Departme	Created
	programme on pests			nt of	awareness on
	and diseases of			Horticultu	pests and
	coconut"			re,	diseases of
				Governm	coconut and
				ent of AP	their
				at	management
				T.Kothap	
				alli and	
				Katreniko	
				na	
				villages	
	Rythu Sadassu	100	25	Horticult	lecture on Past
	Nyillu Sauassu	100	25	urol	managament in
					management in
				Kesearch	cocoa
				Station,	

				Koyyur	
	Estate and intervention	105	10	ΠU Demonstrate	E1
	Farmers interaction	125	12	Departme	Explained
	meeting			nt of	about the RSW
				Horticultu	symptoms and
				re,	management
				Governm	
				ent of AP	
				Aratikatla	
				village of	
				West	
				Godavari	
				district	
	Awareness meeting	80	7	M/s.	Created
	on Rugose spiraling			Krushiva	awareness
	whitefly and its			la	meeting on
	management			Coconut	Rugose
	strategies			Producer	spiraling
	U			Company	whitefly and its
				and	management
				Departme	strategies
				nt of	Ser
				Horticultu	
				re	
				Governm	
				ent of ΔP	
				of	
				a Dollanala	
				in vinage	
				of East	
				Godavari	
		120	10	district	
	Awareness meeting	120	12	Kadiyapu	Created
	on Rugose spiraling			lanka	awareness on
	whitefly			village	Rugose
	Awareness meeting	100	8	Kadiyapu	spiraling
	on Rugose spiraling			lanka	whitefly and its
	whitefly			village	management
	Awareness meeting	120	8	Malkipur	strategies
	on Rugose spiraling			am	
	whitefly			village of	
				East	

				Godavari	
				district	
	Awareness meeting	80	12		
	on Rugose spiralling			Mungand	
	whitefly			a,	
				K.Yengu	
				palli	
				villages	
				of East	
				Godavari	
				district	
	Awareness meeting	120	10	Kadiyam	
	on Rugose spiraling			village of	
	whitefly			East	
				Godavari	
				district	
	Awareness meeting	90	5	Amalapu	
	on Rugose spiralling			ram	
	whitefly			village of	
	2			East	
				Godavari	
				district	
	Friends of coconut	50	10	HRS.	Training on
	trees (FOCT)			Ambaiipe	scientific
				ta	management
				financial	aspects, quality
				assistanc	seedlings
					production and
				Coconut	plant protection
				Develop	measures in
				Develop	coconut to
				Roard	Twenty
				Doald	trainees
	One day awareness	50	3	Departme	Created
	training programme			nt of	awareness on
	on Rugose spiralling			Horticultu	Rugose
	whitefly incidence.			re.	spiraling
	symptoms and			Governm	whitefly and its
	management			ent of AP	management
	C				strategies
	Awareness meeting	100	8	Departme	Created
	on Rugose spiraling			nt of	awareness
	whitefly			Horticultu	meeting on
	~				0

				re,	Rugose
				Governm	spiraling
				ent of AP	whitefly and its
				Mummid	management
				ivaram	strategies
				village of	
				East	
				Godavari	
				district	
	Awareness meeting	100	10	Departme	Created
	on spiraling whitefly			nt of	awareness on
				Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Razole	strategies
				village of	
				East	
				Godavari	
				district	
	Awarenessmeeting	120	8	Departme	Created
	on coconut pests			nt of	awareness on
				Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Sakinetip	strategies
				alli of	C
				East	
				Godavari	
				district	
	Replanting &	80	5	Departme	Discussion and
	Rejuvenation scheme			nt of	suggestions
	on coconut			Horticultu	made on the
				re,	replanting and
				Governm	rejuvenation of
				ent of AP	coconut
				Kommar	scheme
				agiripatn	
				am and	
				Goganna	
				matam	
				villages	

	Awareness meeting	80	5	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Kalavala	strategies
				palli	
				village of	
				West	
				Godavari	
				district	
	Awareness meeting	100	12	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Ravada	strategies
				village	
				Ranastala	
				m	
				mandal	
				of	
				Srikakula	
				m district	
	Awareness cum	120	8	Departme	Created
	training programme			nt of	awareness on
	on Rugose spiralling			Horticultu	Rugose
	White fly			re,	spiraling
				Governm	whitefly
				ent of AP	management
				Kadiyam	
				village of	
				East	
				Godavari	
	Kisan Kalyan	120	15	Departme	Created
	Karyasala as a part of			nt of	awareness on
	Gram Swarajya			Horticultu	Rugose
	Abhiyan with focus			re,	spiraling
	on the strategies for			Governm	whitefly
	Doubling farmers			ent of AP	management
	income by 2022			Kadiyam	

				willoga of	
				vinage of	
				East	
				Godavari	
	Workshop on	50	10	ICAR-	Discussions on
	"Management of			CTRI,	the RSW
	Coconut Rugose			Rajahmu	management
	spiraling whitefly"			ndry	strategies
	Rugose spiraling	100	8	ICAR-	Rugose
	whitefly awareness			CPCRI	spiraling
	meeting and a			and	whitefly
	demonstration on the			Departme	awareness
	feasibility of using			nt of	meeting and a
	Drone technology in			Horticultu	demonstration
	Rugose spiraling			re,	on the
	whitefly			Governm	feasibility of
	management.			ent of AP	using Drone
				Kadiyapu	technology in
				lanka	Rugose
				village	spiraling
				-	whitefly
					management.
	Training programme	50	5	Departme	Created
	on Rugose spiralling			nt of	awareness
	whitefly on coconut			Horticultu	meeting on
	and oilpalm.			re,	Rugose
	1			Governm	spiraling
				ent of AP	whitefly and its
				Neeladev	management
				ipuram	strategies
				and	8
				Kurukuru	
				village of	
				Eluru	
				division	
	Human Resource	100	12	Departme	Created
	Development			nt of	awareness
	Training Programme			Horticultu	meeting on
	(HRD) on Rugose			re.	Rugose
	Spiralling Whitefly			Governm	spiraling
	on coconut oilpalm			ent of AP	whitefly and its
	and other			Kadali	management
	Horticultural Crops			village	strategies
	Training programme	100	8	Departma	Created
	rranning programme	100	0	Departine	Citateu

on Production and			nt of	awareness
protection aspects of			Horticultu	meeting on
coconut			re.	Rugose
			Governm	spiraling
			ent of AP	whitefly and its
			Kaviti	management
			village of	strategies
			Srikakula	8
			m district	
UDYANA 2018 –	120	15	Departme	UDYANA
Horti Expo			nt of	2018 – Horti
(Horticulture show &			Horticultu	Expo
Organic Exhibition)			re,	(Horticulture
Č ,			Governm	show &
			ent of AP	Organic
			Velagapu	Exhibition)
			di	,
World coconut day	150	20	Coconut	Created
·			develop	awareness on
			ment	pest and
			board,	disease
			Vijayawa	management in
			da at	coconut
			Ichapura	
			m,	
			Srikakula	
			m Dist	
World coconut day	100	8	Departme	Created
			nt of	awareness on
			Horticultu	pest and
			re,	disease
			Governm	management in
			ent of AP	coconut
			at AMC,	
			Ambajip	
			eta	
Scientist farmer	75	5	Departme	Scientist
interaction meeting			nt of	farmer
			Horticultu	interaction
			re,	meeting on
			Governm	coconut
			ent of AP	
			ADH,	

				1	
				Amalapu	
				ram	
	Awareness on	100	12	Departme	Created
	Rugose spiralling			nt of	awareness on
	whitefly and its			Horticultu	Rugose
	control			re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Vakkalan	strategies
				ka	
				village,	
				Ambajip	
				etamanda	
				1	
	Awareness meeting	50	5	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Punyaksh	strategies
				etram	
				village of	
				Rajanaga	
				ram	
				Mandal	
	Awareness meeting	75	5	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Chinthap	strategies
				alli	
				village of	
				Pusapatir	
				egha	
				Mandal	
	Incidence of black	100	8	Departme	Incidence of
	headed caterpillar in			nt of	black headed
	coconut and its			Horticultu	caterpillar in
	management through			re,	coconut and its
	biological control			Governm	management

				ent of AP	through
				S.Yanam	biological
				village,	control
				Uppalagu	
				ptamman	
				dal	
	One day sensitization	100	5	Departme	Created
	training programme			nt of	awareness on
	on "Rugose spiraling			Horticultu	Rugose
	whitefly"			re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Kommug	strategies
				udem	
				village of	
				Tadepalli	
				gudemm	
				andal	
	Awareness meeting	50	3	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				Rajanaga	strategies
				ram	
				village	
	Awareness meeting	60	4	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
				re,	spiraling
				Governm	whitefly and its
				ent of AP	management
				B.V.Lan	strategies
				ka	C
				village of	
				Alamuru	
				mandal	
	Awareness meeting	50	3	Departme	Created
	on Rugose spiralling			nt of	awareness on
	whitefly			Horticultu	Rugose
	,			re,	spiraling
				Governm	whitefly and its
					-

Awareness meeting on Rugose spiralling whitefly502Departme ntCreated awareness on Horticultu Rugose re, spiraling Governm whitefly and its ent of AP management Vanapalli strategiesVanapalli of kothapet amandal and Velicher111
Awareness meeting on Rugose spiralling whitefly 50 2 Departme nt of Horticultu Created awareness on Horticultu Governm Horticultu Rugose spiraling Governm whitefly and its ent of AP Vanapalli strategies , Billakurr u villages of Kothapet amandal and Velicher
Awareness meeting on Rugose spiralling whitefly502Departme ntCreated awareness on Horticultu re, ent of AP Vanapalli strategiesImage: Image of the spiral strate spiral strate spiral strate spiral of Kothapet amandal and VelicherImage of the spiral spiral spiral strate spiral strate spiral spiral spiral strate spiral spiral strate spiral spiral spiral strate spiral spiral strate spiral
Awarenessmeeting502DepartmeCreatedon Rugose spirallingntofawarenessonwhiteflyntofRugosere,spiralingGovernmwhitefly and itsent of APmanagementvanapalliVanapallistrategies,Billakurru villagesofKothapetamandalandvelicher
on Rugose spirallingnt of awareness onwhiteflyHorticultuRugosere,spiralingGovernmwhitefly and itsent of APmanagementVanapallistrategies,Billakurru villagesofKothapetamandalamandalandVelicher
whiteflyHorticultuRugosere,spiralingGovernmwhitefly and itsent of APmanagementVanapallistrategies,Billakurru villagesofofKothapetamandalandVelicher
re, spiraling Governm whitefly and its ent of AP management Vanapalli strategies , Billakurr u villages of Kothapet amandal and Velicher
GovernmWhitefly and itsent of APmanagementVanapallistrategies,Billakurru villagesofofKothapetamandalandVelicher
Image: Second
Vanapalli strategies , Billakurr u villages of Kothapet amandal and Velicher
, Billakurr u villages of Kothapet amandal and Velicher
u villages of Kothapet amandal and Velicher
of Kothapet amandal and Velicher
Kothapet amandal and Velicher
amandal and Velicher
and Velicher
Velicher
Venener
of
Aneyapu
Training and 50 2 5 Constal
Departme Created
on Rugose spiraling nt of awareness
Whiterly Horticultu meeting on
re, Rugose
Governme spiraling
nt of AP whitefly and its
Ghantava management
rigudem strategies
village ,
Nallagerl
a mandal
Farmersscientist755DepartmeCreated
interaction meeting nt of awareness
Horticultu meeting on
re, Rugose
Governme spiraling
nt of AP whitefly and its
Raiahmu management
ndry strategies
Training programme 50 3 AICRP on Created

	on "Rugose spiraling			Nematode	awareness
	whitefly"			s Koyyur	meeting on
	winterry			DRYSRH	Rugose
					spiraling
				0 Denartme	whitefly and its
				nt of	management
				III OI	management
					strategies
				re,	
				Governme	
				nt of AP	
				Kadiyam	
	Awareness meeting	75	3	Departme	Created
	on Rugose spiralling			nt of	awareness
	whitefly			Horticultu	meeting on
				re,	Rugose
				Governme	spiraling
				nt of AP	whitefly and its
				K.	management
				Gangavar	strategies
				am	
				village of	
				Ramacha	
				ndrapura	
				m mandal	
	One day training	80	4	Departme	Created
	programme on			nt of	awareness
	"Management of			Horticultu	meeting on
	Rugose spiraling			re,	Rugose
	whitefly".			Governme	spiraling
				nt of AP	whitefly and its
				Kalavala	management
				palli	strategies
	Bimonthly Training	95	3	DRYSR	Delivered
	& Visit (T&V)			HU	lecture on
	Programme			KVK.	Management of
				VR	Rugose
				Gudem	Spiraling white
					fly in plantation
					crops
	Meeting on	50	2	Departme	Meeting on
	Replanting &		_	nt of	Replanting &
	Rejuvenation scheme			Horticultu	Rejuvenation
	on coconut			re	scheme on
		1	1	10,	Seneme OII

				Governme	coconut and
				nt of AP	explained
				Dangeru	protection
				village of	measures to be
				Gangavar	taken during
				mmandal.	Replanting of
				East	coconut under
				Godavari	R&R scheme
				district	and created
					awareness on
					Rugose
					spiraling
					whitefly and its
					control
					measures to the
					farmers.
	Awareness meeting	50	2	Departme	Delivered
	on management of			nt of	lecture on
	Rugose spiralling			Horticultu	Integrated Pest
	whitefly.			re.	management of
				Governme	Rugose
				nt of AP	spiralling
				Gopanna	whitefly
				palem.	j.
				West	
				Godavari	
	Rugose spiralling	75	3	Departme	Rugose
	whitefly incidence			nt of	spiralling
	and its management			Horticultu	whitefly
	measures			re	incidence and
				Governme	its management
				nt of AP	measures and
				Jivvamm	created
				avalasam	awareness to
				andal	farmers
				Vijavana	
				garam	
				district	
	Padinantacharchaved	75	2	Demostra	Explained
	ika on "Pests and	15	<i>L</i>	Departme	about Paets and
	diseases in coconut"			nt of	disassas
	uiscases in coconut			Horticultu	management in
				re,	management in
				Governme	coconut and

	One day training programme on IPM in protected cultivation under MIDH programme.	50	2	nt of AP Ambajipe ta Departme nt of Horticultu re, Governme nt of AP Ambajipe taVelaga pudi, Guntur	delivered lecture Delivered a lecture on IPM in protected cultivation under MIDH programme.
	Coconut Development Board block level meeting on Rugose spiraling whitefly.	100	2	Coconut Develop ment Board Kommar giri village of I. Polavara m mandal	Coconut Development Board block level meeting on Rugose spiraling whitefly.
	Rugose spiraling management	75	2	Departme nt of Horticultu re, Governme nt of AP Madimilli village of Ainavelli mandal	Delivered a lecture on Rugose spiraling whitefly and its management practices to the farmers.
	Awareness meeting on Rugose white fly.	100	5	Departme nt of Horticultu re, Governme nt of AP Avidi village, East	Delivered a lecture on Rugose spiraling whitefly and its management practices to the farmers.

				Godavari district	
	Webinar on "Rugose spiralling whitefly"	75	2	Coraman dal fertilizers limited	Delivered a lecture on Rugose
	Webinar on "Rugose spiralling whitefly in coconut"	85	4	Navasari Agricultu ral Universit y, Gujarat	Delivered a lecture on Rugose spiraling whitefly and its management practices to the farmers.
	Webinar on Biocontrol management of pest and diseases in coconut	100	2	DRYSR HU KVK, VR Gudem.	On Biocontrol management of pest and diseases in coconut
	Virtual Brainstorming Session on Invasive whitefly complex on plantation crops: Technical knowledge and Technological interventions for management	125	3	ICAR- Indian Institute of Oil Palm Research, Pedavegi, West Godavari	Biocontrol based management of rugose spiralling whitefly in plantation crops'
	AwarenessonbiocontrolbasedmanagementofcoconutBlackheadedcaterpillarOpisinaarenosella	75	2	DRYSR HU PBS, Sompeta	Bio control based manangement of coconut black headed caterpillar in Makarapuram village

		one day training programme on Bio- control management strategies of insect pests in Flower crops	120	2	ICAR – DFR Floricultu re Regional Station, Vemagiri , East Godavari district	Sompetamanda l and Jadipudi in Kanchalimanda l of Srikakulam Bio control based pest management in flower crops
25.	KAU, Thrissur	IPM in major crops IPM in paddy		Agrl. Officers Palakkad (24) Agrl. Officers, Palakkad (25)	Palakkad district Palakkad district	Biocontrol of pest and diseases
		Production technology of common biocontrol agents Biocontrol agents an introduction Mass production of natural enemies	Farmers (34)	Agrl. Officers, Palakkad (22) Students (24) State officials- 1	Palakkad district Ramavar mapuram Thrissur district	
		ProductiontechnologyofcommonbiocontrolagentsRecentplantprotectiontechniquesin cashewBiologicalcontrolofcroppestsPestmanagementinorganicspice	Farmers (28) Farmers (39)	Agrl. Officers (30) 30 students	Palakkad district Malappur am district Thrissue dt Thrisur dt	

	cultivation				
	Biocontrol of crop	Farmers		Palakkad	
	pests	(36)		district	
	Mass production of		Agrl.	Palakkad	
	bioagents (Dr.		Officers	district	
	Madhu		(29)		
	Subramanian)				
	Post flood soil crop	Farmers		Kuzhur	
	management	(48)			
	Monthly Agro Clinic	Farmers		Kodungal	
	and Farm Advisory			lur	
	Conclave				
	Mass production of		Agrl	Kerala	
	bioagents		Officers	state	
	erougento		(32)	State	
	Mass production of	Farmers	(32)	Palakkad	
	higgents	(31)		i ulannau	
	Mass production of	Farmers		Dalakkad	
	bioagents	(30)		i alakkau	
	Dioagents Dioagentral of group	(30)		Muuottun	
	Biocontrol of crop	rarmers(Muvallup	
	Mass and wation of	32)	A ~#1	uZila Dololylygd	
	Mass production of		Agri.	Рајаккао	
	bioagents		Officers		
		-	(30)	TT	
	One day training and	Farmers		Kottathar	
	demonstation –	(40)		а	
	Biocontrol in rice				
	One day training and	Farmers		Vengapp	
	demonstation –	(36)		alli	
	Biocontrol in rice				
	Biocontrol of Rugose		Agrl.	Kozhikod	
	Spiralling Whitefly		Officers	e	
			(31)		
	Biocontrol of crop	ST		Varanthar	
	pests	farmers		appalli	
		(35)			
	Farmer-scientist	Farmers		Ollukkara	
	interface			block	
	Farmer-scientist	Farmers		Mathilak	
	interface	1 unions		am block	
	Farmer_scientist	Farmers		Thriseur	
	interface	1 41 11101 5		district	
	Diamosticida		Dest's' 1	uisuict	
	Biopesticides		Pesticide		

				1			
				dealers			
		D'ala si al		(22)	D-1-1-1 1		
		Biological control		DAESI	Рајаккао		
		(Smitha Revi)		1 rainees			
				(24)			
		Monthly Technology		Dept.	Thrissur		
		Advice (Smitha		Officials	District		
		Revi)	-	(29)			
		MTA (Smitha Revi)	Farmers		Thissur		
					(Online)	-	
		Training programme		Kudumb	Alathur		
		- production ofcost		asree			
		effective		members			
		biopesticides		(15)		-	
		Biological control in	Farmers		Arimbur		
		rice (Smitha Revi)	(30)				
		Biological control in	Farmers		Thekkink		
		rice (Smitha Revi)	(28)		ara		
	Biocontrol agents –			Agricult	Vytilla		
		on farm production		ure	(online)		
		(Smitha Revi)		Assistant			
				S			
		Biological control		Farmers	Tavanur		
		(Smitha Revi)		(25)			
		Biocontrol agents		Farmers	Thrissur		
		(Smitha Revi)		(34)			
		Biocontrol agents		Farmers	Thrissur		
		(Smitha Revi)		(30)			
26.	IGKV	Initially a training	30	Dr.	Village –	Conducted	
		and demonstration	farmers	Jayalaxm	Badecha	Awareness	
		programme of		i	kwa(Jagd	Programme	
		preparation of		Ganguli,	alpur)	about use	of
		Trichocards was		Smt.		Biocontrol	
		given to the farmers,		Rashmi		agents.	
		during the year 2018		Gauraha			
		– 19.					
		Awareness	73	1	Dantewa	Awareness	
		programme and use	farmers		da	Programme	
		of biocontrol agents.				about use	of
		During the year 2019				Biocontrol	
		- 20.				agents.	
		Awareness	73	2	Village –	Awareness	
		programme and	farmers		Dhondra,	Programme	

		benefits of			Pharasag	about use of
		biocontrol agents			aon,	Biocontrol
		through a lecture in			Kondaga	agents.
		hindi. During the			on	C
		vear 2020 – 21.			(Bastar)	
		Delivered 3 lectures	30	1.	Fingeshw	Awareness
		in the Skill	trainees	- ,	ar	Programme
		Development of	attended		(Gariyab	about use of
		Rural Youth (STRY)	the		and)	Biocontrol
		training program on	program.		,	agents.
		"Production of	r C			
		Biocontrol agents"				
		organized at CoA &				
		Res. Stn.,				
		Fingeshwar				
		(Gariyaband) during				
	the year 2021 - 22. One day traning					
			78 tribal	2	Village –	Awareness
		programme and use	farmers		Arajkund	about use of
		of benefits	participat		, Block –	Biocontrol
		biocontrol agents.	ed in the		Ambagar	agents.
		during the year 2021	program.		h	
		- 22.			Chowki,	
					Rajnandg	
					aon	
27.	UAHS	Formers meet on	50	5	Challaker	50% Reduction
		Importance of			e, taluku,	in soil born
		bioagents in			marikani	diseases in
		agriculture and			ve,	pepper, ginger,
		horticultural crops			kunchena	ragi,
		and inputs			halli,	
		distribution			togarsi,	
		name of the officer:			choradi,	
		Dr. S Pradeep and			komman	
		Dr Divya, M			ahalu,	
					Gilalagu	
					ndi,ranga	
					pura	

Sl.N	Centres	Techni	Audio visual	Facebo	What	e-	TV and
0		cal	developed and	ok/	sApp	folde	Radio
		folder/l	distributed	YouTu	group	rs/ e-	Talks on
		eaflet	(Bio-	be/	devel	char	the
		/pamp	suppression of	Instagr	oped/	ts	importanc
		hlet/	exotic whitefly,	am			e of
		Bookle	Ecological				indigenous
		t	engineering,				natural
			Invasive pests,				enemies
			Nematodes as				and their
			friends and foes				conservati
							on
1.	PAU,	9		1		14	
	LUDHIANA						
2.	CPCRI	2500	7	75	2		
3.	SKUAST,			5	1		7
	Srinagar						
4.	KAU,			4	1		
	Vellayani						
5.	KAU			1	1		
	Kumarakom						
6.	PJTSAU		1				
7.	CAU,	1			1		
	Pasighat						
8.	MPKV	3950	5	1			
9.	TNAU	2000	1	1			2
10.	SKUAST-	14		6	2		
	Jammu						
11.	OUAT	1					
12.	ANGRAU						5
13.	AAU, Anand	11					1
14.	DrYSRHU,	3			3		
	Tirupathi						
15.	AAU, Jorhat	20	2				29
16.	YSPUHF,	500		400	1		1
17	Solan CDDUA 8 T	5000	2	2	1		
17.	GBPUA&T	5000	2	5			
18.		200		2	4		
19.	PAU,			3	8		
	LUDHIANA						

XXXIII. Distribution of Extension material and social media presence

20.	DrYSRHU	1200	3	2	1	
21.	MPUAT,	16	1	1	10	
	Udaipur					
22.	IGKV	9	2			
23.	KAU,	3	1			
	Thrissur					
24.	UAHS	120			2	

XXXIV. Brief report and Impact of the TSP programmme

GBPUA&T, Pantnagar

Under Tribal Sub-Plan (TSP), demonstrations on bio-control technologies were conducted covering 1072 farmers. A total of 50 q of Pant Biocontrol agent - 3, which is a mixture of *Trichoderma harzianum*-14 (Th) and *Pseudomonas fluorecens*-173 (Psf), was distributed to the farmers for soil treatment, seed treatment, seedling treatment and foliar spray. Input distributed to Tribal farmers are Neem oil (440 L); Pheromone traps and lures (2980 Nos.); Poly sheet (548 Nos.); Vermicompost (30 Q); seeds of vegetable kits (2000Nos.) and distributed quality seed of Paddy (15q) and Vegetable pea seeds (500 kg). Demonstrated Soil Solarization technology to farmers for the application of polysheet (2x10m) on nursery beds of paddy. Placed Pheromone trap (nos.2000) with lure control rice stem borer. Yellow sticky trap (5000 Nos.) for control of sucking pest were installed. A total of 30 field days and 14 training programmes were conducted.

UBKV, Pundibari

Trainings on biological control of crop pests and bio intensive cultivation of mustard and litchi were provided to the tribal farmers and all essential inputs were distributed. Litchi saplings were distributed among the farmers for planting in the backyards of their house to encourage them in fruit cultivation to meet up their home consumption requirement as well as will enhance their income. 30% increase in yield of rapeseed-mustard due to replacement of local variety. Replacement of area under fallow land (25 acres) with introduction of mustard crop.The distributed behives were maintained with utmost care by the group of tribal farmers and a good amount of honey was extracted and sold in the local market.

KAU, Vellayani

Conducted three awareness programmes on potential of biopesticides to the farmers in collaboration with the State Department of Agriculture as a part of "Azadikaamritmahotsav", where in around 100 participants including farmers and extension officers were trained on the use of biocontrol agents.

SKUAST, Srinagar

Six tribal areas of Kargil including Bagh-e- Khomini, Chanigund, Hardass, Kirkichoo, Mingy and Slikchey were selected for benefiting the farmers with IPM technologies of Management of Codling moth. Six core groups of literate orchardists were made to implement the programme and help a total of 130 farmers. Each core group was provided basic training related to IPM of Codling moth, including timing of chemical spray, use of Tricho cards and pheromone traps, trunk banding of apple for trapping and killing of larvae, debarking of old trees and disposal of infested fruits etc.

The tribal community of Ladakh (Kargil and Leh) views this program of ICAR– NBAIR led by the SKUAST-K with utmost positive gesture and as apple saving mission. With inputs since last three years and on-the-spot awareness programs, the beneficiaries of TSP were observed to adopt and implement IPM of codling moth. The cheapest method of trapping the apple codling moth using trunk banding was adopted by the farmers in large scale.

CAU, Pasighat

2018-19: 100 numbers of tribal farmers were adopted and given positive feedback on importance of light trap, Knapsack spryer, Neem oil, and vegetable seeds for the effective management of insect pests in Vegetables.

2020-21: Total 180 tribal farmers (Male: 102 and Female: 184) were benefitted by application of microbial pesticides for pest management and organic production of horticultural crops. The districts covered were East Siang (02 villages) and West Kameng (03 villages). First time TSP programmes on application of Biocontrol agents in West Kameng district.

2021-22: Around 286 numbers of tribal farmers (Male: 102 and Female: 184) were benefitted by application of microbial pesticides for pest management and organic production of horticultural crops like Export Quality Khasi Mandarin and Organic Crucifers. The districts covered were East Siang (05 villages), ShiYomi (05 villages) and Lower Dibang Valley (01 village). First time TSP programmes on application of Biocontrol agents in remote villages of Shi Yomi district.

MPKV, Pune

Demonstrated the effectiveness of biopesticides *L. lecanii, M. anisopliae, B. bassiana, T. viride* in tribal area of Nashik district against pest of mango, guava, and cashew.

MPUAT, Udaipur

Farmer's field demonstration has been carried out in TSP area in which a total of 159 farmers have been benefited. Three farmer's training were conducted at farmers field in different villages and to create awareness to the farmers for biological control of crop pests in *Kharif* and *Rabi* seasons 2019-20 in which total of 234 farmers were benefited.

TNAU, Coimbatore

TSP program trainings on production of biocontrol agents and biointensive pest management were conducted to benefit the tribal farmers from Coimbatore (Jambukandy, Senguttai villages), Erode (Bejeletti) and Tirupur (Karumutti) districts. Parasitoids, Predators, battery operated sprayer, neem oil, teepol, plastic bucket, plastic mug, plastic trays, cumbu grains, maize grains, vegetable seeds and training bags were provided. About 100 farmers participated in the programme.

OUAT, Bhubaneshwar

During 2021-22, TSP programme was taken up in Haladikundi, Dholpashi and Khairatangara villages of kankadahada block of Dhenkanal district where 100 tribal farmers were participated.

ANGRAU, Hyderabad

Tribal farmers successfully cultivated rice in 288 acres and obtained good yields by adopting organic farming practices. BIPM in rice organic farming farmers recorded higher yields (4394 kg/ ha) compared to traditional tribal farmers (2224 kg/ha) without any fertilizer application and plant protection measures.

BIPM farmers realized additional yield of 2170 kg/ha, additional income of Rs.14625/- with high incremental benefit cost ratio (1:6.5) and cost benefit ratio (1:3.68) compared to traditional tribal rice cultivation. BIPM FLD farmers of rajmash cultivated in 50 acres recorded higher yields (568.75 kg/ ha) compared to 443.75 kg / ha in farmers practice with additional yield of 125 kg/ha ; additional income of Rs. 7500/-and incremental benefit cost ratio of 1: 6.7 compared to farmers practice of no fertilizer and no plant protection.

Ginger FLD farmers recorded higher yields (3480 kg/ ha) in 195 acres compared to 2895 kg / ha in farmers practice with additional yield of 582 kg/ha with additional income of Rs. 23,280/-and incremental benefit cost ratio of 1: 17.1 compared to traditional farming. Turmeric FLD farmers realized good yields (3400 kg/acre with additional yield of 600 kg/ha

with additional income of Rs. 31,525/- and incremental benefit cost ratio of 1: 23.1 compared to traditional cultivation (2800 kg/acre). Tribal farmers adopted biointensive practices in vegetable cultivation (chillies, brinjal, tomato, cabbage) and benefitted with additional income ranging from Rs. 3000 to 4000/- per acre.

Promotion of biological control techniques in rice, ginger, turmeric, rajmash and vegetables covering 709 acres in 66 villages in Arakuvalley and Chinthapalli divisions, Visakhapatnam district, Andhra Pradesh through front line demonstrations, farmers trainings, method demonstrations, exposure visits, rythusadassus's, field days created awareness to 859 tribal farmers on biocontrol agents, biopesticides and biofertilizers. Adoption of biological control and biofertilizers in organic cultivation improved the crop yields compared to farmers practice in tribal areas from the year 2015-16 to 2021-22 through ICAR-AICRP on Biological control.

AAU, Anand

2017-18: Fifty tribal farmers (chick pea growers) were selected from Dahod district and distributed bio-inputs. There was a significant reduction (65-70%) in incidence of *Fusarium* wilt and *H. armigera* and 12-15% higher yield was recorded in the treated fields compared to untreated. Fifty tribal farmers (okra growers) were selected from Tapi district and distributed bio-inputs. Significant reduction (55-60%) in pest and disease was observed with 10-15% increase in the fruit yield.

2018-19: Two hundred tribal farmers were selected from Dediyapada, Sagbara and Tilakwada talukas of Narmada district. In association with Krishi Vigyan Kendra (KVK), Dediyapada, Navsari Agricultural University, khedutshibir and training programmes were organized in the month of September, November 2018 and March 2019 to train the farmers

on use of biocontrol inputs and strategies to tackle key pests and diseases to achieve sustainable crop production. Biocontrol inputs were distributed to farmers.

2019-20: Hundred tribal farmers were selected from Dediyapada, Sagbara and Tilakwada talukas of Narmada district. In association with Krishi Vigyan Kendra (KVK), Dediyapada, Navsari Agricultural University, khedutshibir and training programmes were organized in the month of July and August 2019 to train the farmers on use of biocontrol inputs and strategies to tackle key pests and diseases to achieve sustainable crop production. Biocontrol inputs were distributed to farmers. Significant reduction (35-40%) in use of chemical pesticides was recorded.

2020-21: In the year 2020-21, 125 tribal farmers were selected from Dediapada, Nanded and Garudeshwartalukas of Narmada district. In association with KrishiVigyan Kendra (KVK), Dediyapada, Navsari Agricultural University, Khedutshibir and training programmes were organized in the month of September 2020 and March 2021 to train the farmers on use of biocontrol inputs and strategies to tackle key pests and diseases to achieve sustainable crop production. Biocontrol inputs were distributed to the farmers. Significant reduction (25-30%) in use of chemical pesticides was documented with the use of bio-inputs provided.

2021-22: In the year 2021-22, Fifty tribal farmers were selected from different villages of Dediyapada taluka of Narmada district and twenty-five farmers from different villages of Dahod district were selected. In association with Krishi Vigyan Kendra (KVK), Dediyapada, Navsari Agricultural University, khedutshibir and training programme was organized in the month of October 2021 and February 2022 to train the farmers on use of biocontrol inputs and strategies to tackle key pests and diseases to achieve sustainable crop production. Further, in association with KVK, Dahod, Anand Agricultural University, Anand khedutshibir and training programme was organized in the farmers on use of biocontrol inputs and strategies to tackle key pests and diseases to tackle key pests and diseases to achieve sustainable crop production. Further, in association with KVK, Dahod, Anand Agricultural University, Anand khedutshibir and training programme was organized in the month of March 2022 to train the farmers on use of biocontrol inputs and strategies to tackle key pests and diseases to achieve sustainable crop production. Biocontrol inputs were distributed to the farmers. Significant reduction (25-30%) in use of chemical pesticides was documented with the use of bio-inputs provided.

AAU, Jorhat 2018-19 to 2021-22

Under TSP programme, 22 villages covered from 5 district of Assam with 820 tribal beneficiaries were selected and inputs were supplied. Microbial formulations of Beauveria, Metarhizum, agricultural tools like sickle, apron, khurpi, water can, backpack sprayer, falcon kit, rain coat and neem pesticides were supplied to the farmers.

Glimpses of the TSP training programme

The trainings were conducted with cooperation from KVKs, and ADOs. A total of 920 numbers of farmers were benefited from the programme. The main subjects covered in the trainings were insect pest of rice and vegetables. The eco-friendly way of management of insect pests were emphasized along with the proper use of biopesticides, different trap materials, use of neem-based pesticides instead of chemical pesticides, use of knapsack Sprayer and the cares and safe handling of biopesticides.

YSPUHF, Solan

Demonstrations on the use of eco-friendly methods of pest management for apple and vegetable crops covering an area of 145ha (apple), 21 ha (almond), 5 ha (apricot), 37.5 ha (peas), 15 ha (beans) and 40.5 ha under cauliflower and cabbage during the period under report. In this programme, about 600 farmers were benefited through 14 number of training camps. In tribal areas, most of the farmers were exposed to the use of bio-pesticides for the first time. The bio-inputs and literature suppled were *Metarhizium anisopliae* (360 Kg), *Beauveria bassiana* (235L), *Trichoderma viride* (690Kg), Neem baan (245 L) and yellow sticky traps (160 nos). The literature supplied were Package of Practices of fruit crops (100 nos.) and Kisan diary (600 nos.) In case of cauliflower number of pesticide sprays was reduced by 2-3. In apple, farmers saved about Rs.14000/ha to Rs.17000/ha as cost of insecticides for the management of root borer.

KAU, Thrissur

2019-20: The project activities were undertaken with the support of ATMA (Agriculture Technology Management Agency), Department of Agriculture, Wayanad. A total of 184 farmers in Kottathara, Padinjarethara, Kuppadithara and Vengappalli Panchayats in Mananathavadi Taluk and Edavaka and Nallurnad Panchayats in Vythiri Taluk were provided with biopesticides. Training programmes were also conducted for the above farmers on the proper use of biopesticides including trichocards.

2020-22: Activities under tribal sub plan (TSP) for the year 2020-21 were carried out at Wayanad and Thrissur districts. The tribal hamlet of Thirunelli was adopted and National Seed Corporation, GoI distributed seed kits that comprised seeds of vegetables, millets and pulses. The centre provided biocontrol agents and biofertilizers to promote organic farming. As the tribal farmers had expressed non availability of sprayers as a major constraint, 15 knapsack sprayers were also distributed for proper application of bioagents. As part of this programme, a total of 216 farmers of Thirunelli panchayat were benefitted. TSP activities in Thrissur district were carried out in the Kallichithra tribal colony. Vegetable seeds and bioagents were provided to 41 farmers (121 family members). Training programme was also conducted for the farmers on proper use of biocontrol agents in organic vegetable cultivation.

XXXV. Brief report and impact on initiatives on National Priorities

CPCRI

a) Doubling farmer's income

- A crop habitat-based pest regression module has been developed at ICAR-CPCRI with Kalpasankara (Chowghat Green Dwarf x West Coast Tall) coconut hybrid and intercrops such as nutmeg, rambuttan, banana, curry leaf, jack, marigold, custard apple *etc.*, for framing farming to fullness.
- A significant attraction of honey bees on coconut and coral vines is indicated in ecological engineering plot. Reduction in pest incidence and systematic crop care could boost up the coconut yield averaging 161 nuts per palm per year after five years of planting.
- In addition to pest regression, a sustained income and employment through complementary utilization of resources was the star attraction of this module that would de-risk farmers who generally adopt for intensive mono-cropping suppressing diversity. Doubling income and self-reliance are accomplished in this approach of crop integration for inclusive development

b) Atmanirbhar Bharat

- ICAR-CPCRI has found a potent green muscardine fungus, *Metarhizium majus* that could control the coconut rhinoceros beetle, *Oryctes rhinoceros*. Spores of *M. majus* enter on cuticular contact and kill the grubs in a fortnight. A dosage of 5×10^{11} spores per cubic metre of pest breeding material is recommended for field application.
- ICAR-CPCRI has also developed technologies for mass multiplication of *M. majus* in inexpensive locally available substrates, such as, coconut water, cassava chips and semi-cooked rice. Women farmers in different panchayaths of Kerala, were organized as clusters, sensitized and trained by ICAR-CPCRI scientists, for mass production of *M. majus* by using semi-cooked rice.
- The active participation and facilitation of extension officials and people's representatives were also ensured for sustainability and continuity of the initiative. The women groups functioned as master trainers for further spread of technology to nearby villages. They also ensured timely supply of bioagents. The entire farming community is now convinced of this technology. Cattle farmers were also targeted by the group in distributing the locally multiplied *M. majus* for delivery on to the cow dung pits, the main breeding point of the beetle. Mass multiplication is recognized as an effective strategy for revenue generation and several *Kudumbasree* missions have taken up this programme.

UBKV, Pundibari

a) Doubling Farmers' Income:

• If the farmers follow the bio-intensive pest management practice, the cost of pest management in different crops will be reduced in long run. The vegetables and fruits produced under bio-intensive pest management system are free from hazardous chemicals and are fetching higher monetary return. In case of mustard, replacement of local variety has helped increasing yields.

• Moreover, inclusion of bee keeping, wherever applicable, in that pesticide free cultivation areas have ensured double income for the farmers as enhancement of yield was recorded due to better pollination. Lastly the honey that they are getting from those bee hives is providing surplus income to the farming community.

b) Atmanirbhar Bharat (Entrepreneurship development):

- The trainings imparted on beekeeping and the inputs distributed for adaptation of bee keeping under TSP is helping the farmers towards entrepreneurship development. They have started levelling their produced honey and are selling in local market.
- Development of bio-agent production unit in the rural areas can also be a part of Entrepreneurship development, if necessary technical and financial supports will be provided.

Dr YSRHU

a) Doubling Farmers' Income

• The usage of biocontrol agents instead of insecticides for pest management in coconut reduced the input cost substantially in coconut based cropping systems. The farmers experiences and case studies details are enclosed in separate file

b) Atmanirbhar Bharat (Entrepreneurship development)

• Mass production technology of predator *Apertochrysa astur* against rugose spiralling whitefly was commercialized to Oil palm processing companies namely, 3F OilpalmTadepalligudem, Godrej Agrovet, Chintalapudi West Godavari district of Andhra Pradesh and private firms *viz.*, and SSD enterprises, Gopalapatnam West Godavari district GIFT Farmer producer organization, Rollapalem, PACS Devaguptam of East Godavari district in Andhra Pradesh and to Cryptoxbiosolutions, Kanyakumari and Echocare limited, Trichy of Tamil Nadu

SKUAST, Srinagar

a) Doubling Farmers' Income

• Various training programmes were organised with the department of Horticulture and awareness programmes were conducted for increasing the farmers' income in various districts of Kashmir. Mostly, the introduction of high density plantations in Kashmir valley will act as a game changer for the fruit industry of Kashmir valley but unfortunately the recent new incursions of new insect pests is the cause of concern in the twin districts of Kashmir Valley especially in Baramullaha and Shopian.

b) Atmanirbhar Bharat (Entrepreneurship development)

• Two start-ups have been created using light traps for turf grub management in Royal Spring Golf Course & another start up as, pheromones for the future; both were funded by JKDST in collaboration with National Institute of Technology, Srinagar. Among the two start-ups, one turned into company as it has got Big Innovation Award funded by DBT, GoI, New Delhi. This is the first of kind company known as M/S Pherobank technologies Pvt. Ltd registered and working in the incubation centre of SKUAST-K.

CAU, Pasighat a) Doubling Farmers' Income:

• Tribal farmers especially from remote villages of various districts such as West Kameng in Feb-2021, ShiYomi in Oct 2021 and Lower Dibang Valley in July 2022 were probably having lower income due to reduced crop yields. It was due to non awareness on crop pests, natural enemies, biocontrol techniques and also non availability of quality plant protection measures. Thus farmers were given with need based bio-pesticides for the organic production of vegetables for their consumption and selling in their own village markets. Application of bio-pesticides not only increased the vegetable yields but also the helped in improvement of nutritional and economic stability of some tribal farmers.

b) Atmanirbhar Bharat (Entrepreneurship development):

• For the promotion of entrepreneurship development farmers were encouraged to carry out on-farm conservation, production and application of bio-control agents for pest management by carrying out capacity building training programmes. Training Programme on 'Bio-intensive Pest Management in Tomato and Cabbage' at CHF Pasighatbenefitted 30 participants. Training Programme on 'Biological Control of Mustard and Maize Pests' at Taki Lalung village also benefitted 30 participants.

MPKV

a) Doubling Farmers' Income :

• AICRP on Biocontrol, Pune has conducted large scale demonstration trials on management of white grubs on sugarcane, biological suppression of *Spodoptera litura* with *Nomuraea rileyi* in soyabean and large scale demonstration on *Trichogramma* spp. against sugarcane borer. From these demonstrations farmers has got confidence in use of biopesticides for the pest management, also by this approach the farmers will get higher yields and return because of reduced cost input. Thus, it will help for doubling farmer's income.

b) Atmanirbhar Bharat (Entrepreneurship development)

• AICRP on Biocontrol, Pune has attempted for production and demonstration of biopesticides through Experimental Learning Programme for last semester of UG and 177 students in last 5 years have been trained in production and marketing of biopesticides. Thus they became confident in entrepreneurship.

MPUAT, Udaipur

- Various bioagents have been produced and made available to the farmers for the use. After that farmers shows interest in using them and over the period bioagents become popular in the area.
- Tricho-cards were distributed for the use by poor farmers having small holding which rarely uses the chemical pesticides and eventually the use of provided bioagents resulted in an increase in the farmers' income.
- Production units have been setup for the production and sale of bioagents so that they will be available for the use by farmers on time.
- Free distribution of biopesticides and bioagentstaken up so that farmers can adopt them in their package of practices and to make them familiar with the use of bioagents.

TNAU

a) Doubling Farmers' Income:

• TNAU adopted a village Sattakkalpudur in Coimbatore district. Demonstration of biological control against RSW of coconut and release of parasitoids in vegetable crops has been conducted.

OUAT

a) Doubling Farmers' Income

• Enhanced yield in prioritised crops *viz*. Rice, Sugarcane, Brinjal and Maize due tobio intensive pest management module intervention increased the income of farmers.

b) Atmanirbhar Bharat (Entrepreneurship development)

• The very purpose of ELP is to develop entrepreneurship skill development among the B.Sc (Agri.) graduates. They should be job provider (Atmannirbhar) instead of job secure.

ANGRAU

a) Doubling Farmers' Income

• The farmer, K. Apparao, Kothavalasa, Dumbrigudamandal, Araku, Visakhpatnam district used to get annual income of Rs 115700 from rice, ragi, ginger, turmeric and vegetable cultivation during 2015-16. He faced problems like poor crop growth, severe incidence of stem borer, leaf folder, blast and sheath blight in rice; wilt and leaf feeders in rajmash; rhizome rot, termites in ginger and turmeric; different pest and disease problems in vegetables resulted in low yields. With Doubling farmers income interventions like biointensive pest mangement practices, growing improved high yielding varieties, use of liquid biofertilizers, neem cake and mixed vegetable cultivation, he realized increased production in rice (4550 kg/ha), ragi (1000 kg/ha), ginger (3500 kg/ha), turmeric (750 kg/ha) and vegetables (2200 kg/ha) with net income of Rs.165833 /ha during 2020-21.

•

b) Atmanirbhar Bharat (Entrepreneurship development)

- Adoption of eco-friendly low cost biocontrol agent, *Trichogramma chilonis* production system by tribal farmers through establishment of eri silk worm based tricho card production unit in 2017-18.
- Training imparted to 25 tribal farmers on *T. chilonis* production. Trichocard production unit at Asarada village, Chinthapalli division. Trichocardrythumithra group" was formed with 15 tribal farmers of Asarada village and trichocard production by the tribal farmers initiated from kharif, 2018. Production of trichocards (600 No) by tribal farmers resulted in effective utilization of trichocards in 80 acres for pest management in rice organic cultivation during 2018 -2020.
- Ecovibes- Araku Tribal Women Apiary unitwith Honey bee keeping boxes (10No) and honey extractor given to ten tribal women farmers of KorraiKothavalsa village,

Dumbrigudamandal, Araku division, Visakhapatnam district in 2020-21. Tribal women produced 120 kg honey from apiary unit during 2020 -2022.

- Technical support in Establishing Farmers level production unit of *Isaria fumosorosea* NBAIR Pfu35 inaugurated by NBAIR, Bengaluru scientists during January, 2020 maintained NGO-Reddy's Mitra foundation, Srikakulam at Venkataraopeta, Ranasthalammandal resulted in production of *I. fumosorosea* NBAIR Pfu35 (1250 kg) and utilization in 250 ha coconut orchards during 2020-22 gave effective management of coconut rugose spirallying whitefly.
- Technical support in establishing biocontrol laboratory by NGO Vikasa at V.Madula during 2021 facilitated production of *T. chilonis, T. japanicum* cards @ 50 per month and *M. anisopliae* NBAIR Ma35 and *Beauveria bassiana*, NBAIR Bb45 @ 20 kg per month and utilization in demonstrations on organic cultivation in rice, maize, vegetables in agency and plain areas of Visakhapatnam district during 2022.

AAU, Anand

a) Doubling Farmer's Income

• The impact of large-scale demonstrations and tribal sub plan programme witnessed the significant reduction in the usage of chemical pesticides (30-40%) with increased yield (10-12%). The reduction in the input cost has assured the better income to the farming community

a) Atmanirbhar Bharat (Entrepreneurship development)

• The large-scale diffusion of on-farm production and use of microbial biopesticides technology among the farming community has resulted in self-reliance on bio-inputs required for sustainable management of crop pests and diseases.

KAU, Thrissur

a) Doubling Farmers' Income

- The income of progressive famers who adopted bio-intensive pest management in rice was analysed. Earlier, they faced problems like weeds, pests and diseases, water management, soil nutrient issues etc. With DFI interventions like the adoption of biological control of crop pests and diseases, soil nutrient management and integrated weed management, they earn better income.
- Adoption of BIPM practices led to substantial reduction in infestation by major pests and increase in population of natural enemies. The increased yield in BIPM plots as well as reduced the cost of cultivation resulted in the increase in profit.

XXXVI. Significant outcome

CPCRI

- Morphological and molecular identification of five exotic whiteflies *viz.*, *Aleurodicus dispersus*, *A. rugioperculatus*, *Paraleyrodes bondari*, *P. minei* and *Aleurotrachelus atratus* occurring on coconut system done.
- Pesticide holiday approach and conservation biological control using the aphelinid parasitoids *viz.*, *Encarsia guadeloupae*, *Encarsia dispersa*, predators such as *Apertochrysa* sp. *Jauravia pallidula* and *Cybocephalus* sp. and *in situ* habitat preservation of the scavenger beetle, *Leio chrinus*. *Nilgirianus* subdued the invasive potential of *A. rugioperculatus* from >80 % to <10 %.
- Heterogenous landscapes with crop pluralism in coconut garden induced stimulodeterrence by disorientation of exotic whiteflies and de-risking farming community by realising sustainable farm income (>160 nuts per palm per year).
- Three lady beetles and their grubs, *viz.*, *Chilo corusnigritus*, Sasaji *Scymnus dwipakalpa*, and *Pharoscymnus horni* as well as the aphelinid parasitoid, *Aphytis* sp. were found effective in the bio-suppression of the coconut scale, *Aspidiotus destructor* disallowing pest flare up.
- Augmentative release of the stage specific parasitoids *viz.*, *Goniozus nephantidis*, *Bracon brevicornis* and *Brachymeria no satoi* bio-suppressed *Opisina arenosella* infestation significantly and regained palm health.
- Area-wide application of green muscardine fungus, *Metarhizium majus* $(5x10^{11}/m^3)$ in the breeding zones reduced leaf damage by 80% and enhanced nut yield by 13%.

IIMR (Millets), Hyderabad

Management of Fall army worm in sorghum with bioagents:

• Release of *Trichogramma chilonis* @ one card/acre twice at weekly intervals commencing at 7 DAE, 14 DAE of sorghum followed by spray of *Metarhizium anisopliae* (Ma 35) @ 0.5 % at 20, 35 DAE was found to decrease the egg patches, larvae numbers (42.0 %) and whorl damage (59.9%) caused by *Spodoptera frugiperda*, significantly. There was 11.1 and 15.4 % increase in the grain and fodder yield in comparison to control.

KAU, Kumarakom

• *Isaria fumosorosea* followed by neem oil spray could bring about reduction in live colonies and nymphs of Bondars nesting whitefly. Neem oil spray could only bring aboutslightreduction. The production and distribution of bioinputs have been strengthened under the project.

KAU Vellayani.

• Carried out multilocation trials in 12 AICRP plots outside Kerala under the supervision of RRI, Hyderabad on the new indigenous potent isolate *L. saksenae* from Kerala. Produced various biocontrol agents for the benefit of farmers of the state. Established a *Trichogramma* production unit.Created awareness on the benefits and

usage of biocontrol agents in pest management of major crops of Kerala, among the farmers.

NCIPM

• BIPM technology was found effective in the management of major pests of chickpea with a significant reduction in infestation of pod borer (70.52%) and disease incidence of collar rot (77.4%), *Fusarium* wilt (73.77%) and dry root rot (62.5%) over farmers practiceand pest remained below ETL. BIPM strategy proved economically viable with BC ratio 3.87 compared to 3.06 in farmers practice. Implementation of BIPM strategy provided >29 per cent increase in seed yield and >42 per cent increase in net return over FP.

UBKV, Pundibari

• The training programme on use of biocontrol agents for management of pests and diseases has been imparted to 558 tribal farmers of the villages Singimari, Nurpur and Baniagaon of Coochbehar and Alipurduar districts through 17 trainings. Tricho cards (30 pieces/month), pheromone traps (50/month) and antagonist microbials (40 kg/ month) against diseases are being produced and distributed among farmers.

PAU, Ludhiana

- Technology for the management of stem borer using two releases of *T. chilonis* at 10 & 17 days old crop @ 1,25,000/ha in fodder maize has been recommended for farmers of Punjab
- Integrated management of stalk borer, *Chilo auricilius*, early shoot borer, *C. infuscatellus*, and top borer, *Scirpophaga excerptalis* with pheromone traps and *T. chilonis* in sugarcane has been recommended for farmers of Punjab
- Management of gram caterpillar with biopesticide, *Bacillus thuringiensis kurstaki* 0.5 WP (DOR Bt-1) @ 800 g/acre and with Helicop 2 % as (HearNPV) @ 200 ml/ acre in gram has been recommended for farmers of Punjab
- Management of leafhopper in okra with neem based biopesticide, Ecotin (azadirachtin 50000 ppm) @ 80 ml/acre has been recommended for farmers of Punjab
- Management of stem borers and leaffolder with neem based biopesticide, Achook (azadirachtin 1500 ppm) @ 1000 ml/acre or application of Ecotin (azadirachtin 50000 ppm) @ 80 ml/ acre in *Basmati* rice under organic and normal cultivation conditions has been recommended for farmers of Punjab
- BIPM module involving installation of pheromone trap @ 10 traps/acre, two release of *T. chilonis* @ 1,00,000 eggs/ ha (first release after one week of sowing & second one after one week of first release), NBAIR Bt-25 @ 10 ml/ litre of water (1-2 sprays depending on pest incidence, first spray after 20 *days after sowing* to target early instars of FAW larvae) and NBAIR Ma-35 @ 5g/ litre of water (1-2 sprays depending on pest incidence, first spray 10 days after first spray of Bt-25 to target late instars of FAW larvae)

- BIPM module involving *Chrysoperla zastrowi sillemi* releases @ 4 larvae/ plant + yellow sticky traps @ 4 per 250 m² for the management of sucking pests in capsicum and tomato under net house conditions
- Management of stem borer with commercial Bt formulations (Delfin WG and Dipel 8 L) and NBAIR formulations (NBAIR Bt G4, Ma-35 and Bb-5a) in maize and fodder maize
- Validation and dissemination of biocontrol technologies for the management of sugarcane borers at farmers' fields using bioagents, *T. chilonis* and *T. japonicum* in sugarcane conducted over an area of 4493, 4806, 4823, 2004 and 2915 hectares during 2017, 2018, 2019, 2020 and 2021, respectively in collaboration with sugar mills of Punjab
- Validation and dissemination of biocontrol based pest management technologies using bioagents, *T. chilonis* and *T. japonicum* for the management of leaffolder and stemborersconducted over an area of 81, 118, 131, 124 and 139 hectares during 2017, 2018, 2019, 2020 and 2021, respectively in organic rice
- Validation and dissemination of bio-suppression of maize stem borer, *C. partellus* using egg parasitoid, *T. chilonis* at farmers' fields in maize/fodder maize crop conducted at farmer's fields over an area of 162, 177, 179, 24 and 2 hectares during during 2017, 2018, 2019, 2020 and 2021, respectively 2012-13, 2013-14, 2014-15, 2015-16 and 2016-17, respectively

PJTSAU, Hyderabad

- The centre has established mass production techniques of various natural enemies, *viz.*, egg parasitoid, *Trichogramma* spp and maintains cultures of six species: *T. japonicum*, *T. chilonis*, *T. pretiosum*, *T. brassicae*, *T. bactrae*. *Chelonis blackburni* and predator, *C. zastrowi sillemi*.
- The centre scaled up the production of Trichocards and started selling them to farmers, scientists, DATTC and KVK centres. During 2021, Trichocards were sold for 125 acres of land, while in 2022, cards for 400 acres of land were sold to rice, maize and cotton farmers.

CAU, Pasighat

• The centre has successfully isolated native entomopathogenic fungi strains *viz.*, *Metarhizium rileyi, Beauveria bassiana and Lecanicillium lecani* during 2021-22. *Under* Tribal Sub Plan the centres has conducted its first time training programmes at remote villages of different districts *viz.*, at Nafra circle, West Kameng, ShiYomi and Hunli-Desali, Lower Dibang Valley. The centre also recorded first incidence of Coconut Rugose spiralling whitefly and *Aniso pteromalus calandrae* (Howard) on Bruchids in Green gram from Arunachal Pradesh

MPKV, Pune

• Amongst the biopesticide, *Lecanicillum lecanii* @ 5 g/L is found effective for controlling the sucking pest in *Bt* cotton.

- In efficacy studies, *Heterorhabditis indica* @ 10kg/ha (NBAIR WP formulation) wasfound most promising and recorded 64.63 % white grub reduction as against 70.64% in chemical check Fipronil 40% + imidacloprid 40 WG @ 500g/ha.
- BIPM module (*T. pretiosum* @ 1.0 lakh/acre at 10 and 20 DAS, *Metarhizium rileyi* 1×10⁸ spores/g @ 2.0 gm/l at 30 DAS and *H. indica* NBAIIH 38 @ 4 kg/acreat 40 and 50 DAS) is superior in fall armyworm control (28.55%) after farmers practice (6.03%).
- Two applications of *H. indica* @ 1.0×10^{5} / m² (NBAIR WP formulation) at 30 days intervalis effective against white grub in sugarcane.
- Three sprays of *Bt* var. *Galleriae* (*Bt*) @ 1 kg/ha 45 days after sowing at 15 days interval is recommended for the effective control of shoot and fruit borer, *Earias vittella* on okra.
- The eight releases of *T. chilonis* TTS @ 50,000 parasitoids/ha at weekly interval starting from 45 days after emergence of shoots found significantly superior to untreated control in reducing the ESB infestation and recorded significant cane yield.

MPUAT, Udaipur

- The demonstrations on the releases of *T.chilonis* were conducted at farmer's fields in an area covering 10 hectares in Udaipur district of Rajasthan.
- Large scale field trials for the management of *Helicoverpa armigera* (Hubner) on tomato.
- On the basis of 3 years station trials, following recommendations are included in the POP OF MAIZE against FAW :
- Two releases of egg parasitoids *T.chilonis* or *T. pretiosum* @ 1 lakh/ha at weekly interval starting at 10 days after sowing for the management of fall armyworm in maize
- Whorl application of entomofungal pathogen *M. anisopliae* @ 5 g/L for the management of fall armyworm in maize

TNAU, Coimbatore

- Biointensive management of pink bollworm on *Bt* cotton: Pink bollworm damage was 22.00 per cent in BIPM (Erection of pheromone traps (Funnel type) @ 10/ plot/PB Robe and 6 releases of *T. bactrae* 100,000/ha/release, starting from 55 days after germination) plots while it was 32.00 per cent in control. The yield increase in BIPM plots was 20.00 per cent over control plots.
- Biological suppression of rugose spiralling whitefly in coconut: BIPM module *ie., Encarsia guadeloupae* natural conservation + Release of *Apertochyrsa astur* eggs @ 1000/ha + Yellow sticky traps @ 20/ha was demonstrated in Chinnappampalayam, Anaimalai Block, Coimbatore Dt. In BIPM field, there was 80.00 per cent reduction in the population of Rugose spiralling whiteflies (RSW) while in control plot there was 60.00 per cent reduction in RSW population. Similar trend was observed in the population of Bondars Nesting Whiteflies also.
- Bio-intensive insect management in brinjal: In BIPM plots (Azadirachtin 1500 ppm @ 2ml/lit (one round of spray) + *Lecanium lecanii* (one round of spray) + *T*.

pretiosum (8 releases) + Pheromone traps @ 20/ha + Cowpea as bund crop), the fruit damage in brinjal due to *Leucinodes orbonalis* was significantly low (21.80%) when compared to (32.55%).

- Card board boxes for transport and release of Chrysopids eggs: Small card board boxes for release of Chrysopids eggs have been designed and boxes are pined in coconut leaflets without any damage to Chrysopids eggs.
- Labour saving (70%) method for collection of *Corcyra cephalonica* moths has been developed. 3477CC of Tricho cards and 11million predators were supplied to the farmers.

OUAT, Bhubaneswar

• Demand for the biocontrol agents utilization in sugarcane and brinjal crops has been increasing in Odisha due the adoption of BIPM practices for the borers pest management.

ANGRAU, Hyderabad

- Empowering Tribal Farming community through ICAR-Tribal Sub Plan Programme in Araku valley and Chinthapalli regions of Visakhapatnam district by popularization of Organic Farming practices in Paddy, Rajma, Turmeric, Ginger, niger and Vegetables.
- Isolated, characterized local Bioagent, Microbial- *Metarhizium (Nomuraea) rileyi* from infected maize fall armyworm larvae from our region (RARS, Anakapalle, Andhra Pradesh) (AKP-Nr-1) and confirmed as *Nomuraea rileyi* during 2019. The ITS generated sequence was deposited in NCBI Gene Bank database and obtained with accession number (MN 960559). Mass production of *Metarhizium (Nomuraea) rileyi* AKP Nr-1 was standardized
- Isolation of native macrobials *T. chilonis* from fall armyworm eggs from Sugarcane crop of RARS, Anakapalle, Andhra Pradesh (MN116707) and DNA barcodes were generated; *Telenomus remus* from fall army worm eggs of Sugarcane crop of RARS, Anakapalle (<u>MW052800</u>); *Trichogramma chilonis* from fall armyworm eggs from maize crop of RARS, Anakapalle (<u>MW052801</u>); *Telenomus remus* from fall armyworm eggs of maize crop of RARS, Anakapalle (<u>MW052801</u>); *Telenomus remus* from fall armyworm eggs of maize crop of RARS, Anakapalle (<u>MW052801</u>); *Telenomus remus* from fall armyworm eggs of maize crop of RARS, Anakapalle (<u>MW052708</u>).
- Commercial production of Biocontrol agent, *Trichogramma chilonis* with new protocol developed by ICAR- NBAIR, Bangalore as per the protocol of ICAR-NBAIR, Bengaluru from 2016 to 2022 helped in pest management in. Developed a farmer friendly system for production of *T. chilonis* on Eri silkworm (*Samia ricini*) for promotion in tribal areas during 2017. Mass production of Entomopathogenic fungi *i.e.*, *B. abassiana* and *M. anisopliae* mother cultures as conidiated rice from the year 2016 to 2022 and mass production of entomopathogenic fungi, *Isaria fumosorosea* from 2019 -2022 with technical support and protocol of ICAR-NBAIR, Bengaluru.
- New initiative in Establishing New Biocontrol laboratory by NGO Vikasa at V. Madula on 18.12.21 and facilitating production of Trichocards (*T. chilonis, T.*

japanicum) @ 50 cc per monthand *M. anisopliae* NBAIR Ma35 and *B.bassiana*, NBAIR Bb45 @ 20 kg per month and utilization for pest management in demonstrations on organic cultivation in rice, maize, vegetables in agency and plain areas of Visakhapatnam district.

AAU, Anand

- The native isolate *T. chilonis* was documented from the castor and cotton ecosystem and native isolate of *H. indica*, AAU-R strain (Genbank accession no. MW418203) was documented from the soil collected from Talala (LAT21⁰13'44''N, LONG70⁰31'53''E), Dist. SasanGir, Gujarat. Documented the NPV infecting spotted pod borer, *Maruca vitrata* in the cowpea fields of AAU campus (LAT22.534745⁰, LONG72.981918⁰), Dist. Anand, Gujarat.
- Successfully conducted eight research experiments focusing on mustard aphid, shoot and fruit borer in okra, fall armyworm in maize, shoot and fruit borer of brinjal, ecological engineering in cabbage, onion thrips and early blight disease in tomato and potato.
- Three technologies were developed and incorporated in university package of practice/university research recommendation
- Successfully conducted large scale demonstration trials to validate the technologies of BIPM modules in okra, cabbage, mango and pigeonpea covering the area of 580 ha.
- During the period under report, the center has produced 27,312 trichocards and 36.21 tons of microbial biopesticides.
- Established state of the art 'Biopesticide Research and Production Unit' under the project funded by Organic Farming Cell, Govt. of Gujarat with outlay of Rs. 160 lakhs

AAU, Jorhat

- Developed 7 technologies for management of insect pests on rice, rape and mustard, brinjal, papaya, okra and cabbage
- Collected and identified 17 spider species, 7 dragonfly species, 4 dam selfly species, 5 coccinellids species, 2 tiger beetle species, 2 dipteran predator and 1 parasitoid, 4 hymenopteran parasitoid, 1 mirid predator and 1 dermapteran.
- Two technologieson BIPM of cow pea and cucumber were evualuated under multi locational trials

YSPUHF, Solan

- *Trichogramma embryophagum* resulted 16.6 per cent parasitization. The parasitism resulted by *T. achaeae, T. pretiosum* and *T. chilonis* was 5.6, 8.9 and 11.1 per cent, respectively, Adult emergence from the parasitized host eggs was 80, 75, 70 and 86.6 per cent for *T. achaeae, T. pretiosum, T. chilonis* and *T. embryophagum*, respectively.
- *Metarhizium anisopliae* treatment resulted in 71.1 to 82.2 per cent mortality of the apple root borer grubs in different orchards whereas chlorpyriphos (0.06%) resulted 77.4-86.6 per cent

- Bio-intensive Pest Management (BIPM) and chemical insecticides were statistically equally effective in reducing the fruit infestation by *T. absoluta* in tomato. The yield was maximum (22t/ha) in BIPM and was statistically on par (21.3t/ha) with chemical treated plots. The highest fruit infestation (0.62 1.18 %) was caused by *H. armigera*.
- Among biocontrol agents, *Chrysoperla zastrowi sillemi* (4 larvae / plant) resulted maximum reduction (49.1%) in aphid population in capsicum under polyhouseover control after the first release, which was, statistically on par with other bioagents (40.3-55.8%) except *M. anisopliae* (5g/l of 10⁸ spore/g) where the reduction was 35.9 per cent. Ten days afterthe second spray/ release, *C. zastrowi sillemi* (4 larvae / plant) resulted highest (73.8-78.1%) reduction in the aphid population followed by azadirachtin (2ml/L of 1500ppm) (66.5 -68.9%) and *L. lecanii* (5g/l of 10⁸ conidia/g) (66.2%). Other biocontrol agents resulted in 44 to 58.3 per cent reduction in the aphid population over control.
- Management of phytophagous mites on cucumber using *Blaptostethus pallescens* and *Neoseiulus longispinosus* under polyhouse condition. The highest yield (6.3kg/plant) was recorded in plants treated with spiromesifen (100g a.i./ha) followed by *N. longispinosus* (1:20), *N. longispinosus* (1:30), *B. pallescens* (20nymphs/m row) and *B. pallescens* (10 nymphs/m row).
- Seed treatment with *Trichoderma asperellum* formulation @10g/kg seed + soil application of *T. asperellum* formulation after mixing with FYM (10g/Kg FYM) @40g/m² could be an ecofriendly option for *Fusarium* wilt/ root rot of peamanagement.

IGKV

Production of various biocontrol agents vizi.e Trichocards (4351 no), Braco cards 7 to 2022 (1820 no), *Zygogramma* beetles (10,902 no.), Coccinellid beetle (2695 no.), Reduviid bugs (2017 no.), Low cost light trap (32 no.), *Corcyra* eggs (26 cc.) and *Crypto laemus* (10 no.)

NRRI

- NBAIR isolates i.e., NBAIR-PEOWN (*Pseudomonas entomophila*), NBAIR-BATP (*Bacillus albus*), NBAIR-BtoYPS (*Lysinibacillus sphaericus*), NBAIR-PFDWD (*Pseudomonas fluorescens*) and NBAIR-TATP (*Trichoderma asperellum*) shown lesser dead heart and white ear-head damage caused by rice yellow stem borer, leaf damage caused by rice leaf folder but increased plant height and grain yield than the untreated control. Based on this lead result, NBAIR-BATP (*Bacillus albus*) which performed better was carried forward for the multi-location evaluation against rice insect pests.
- Similarly, with respect to disease evaluation trail against rice diseases, NBAIR-PFDWD (*P. flourescens*) was the most effective isolate against rice diseases *viz.*, sheath blight, brown spot and blast with lesser Percent Disease Index (PDI) followed by NBAIR-TATP (*T. asperellum*) under field conditions. Field results revealed that NBAIR-PFDWD treatment enhanced the plant growth of rice plants in terms of plant height, fresh shoot weight, fresh root eight, dry shoot weight, dry root weight and
yield as compared with control plants. Based on this lead result, NBAIR-PFDWD (*P. flourescens*) which performed better was carried forward for the multi-location evaluation against rice disease pests.

KAU, Thrissur

- BIPM in rice: The BIPM practices (*P. fluorescens* @ 10 g/kg of seed, followed by five releases of *Trichogramma* spp. @ 1 lakh/ha starting from 10 days after transplanting or 30 days after sowing, and application of *Beauveria bassiana*) recorded higher population of natural enemies and resulted in reduction in stem borer and leaf folder infestation in rice by 65 and 38%. The rice bug population was 46 per cent low in BIPM plots. Similarly, incidence of bacterial leaf blight was mild in BIPM plots. Adoption of IPM practices led to also substantial increase in yield as well as net returns.
- Plots treated with bioagents namely, *Bt*, *B.bassiana* and *H. indica* have consistently recorded stem borer and leaf folder damages that are comparable or less than the insecticide check and can be effective substitutes to the same.
- Release of *B. pallescens* @ 20/m row in polyhouse effectively reduced the population of spider mite in salad cucumber.
- BIPM in brinjal: The BIPM practices in brinjal (Seven releases of *T.chilonis* @ 1 lakh per ha, two sprays of *Bts* (NBAIR BtG4) and *L. lecanii* (NBAIR-V1 8) @ 15 day interval) resulted in reduction in brinjal shoot and fruit borer and mealybug infestation. Fruit infestation by borer was lower in plots where insecticides were applied (31.51%), followed by BIPM plots (40.05 %). The economic yield was recorded as 57.0 and 42.73 q/ha respectively for BIPM and chemical plots, which were on par. The studies indicated that the BIPM package could be a viable alternative to chemical methods against insect pests in brinjal.

XXXVII. Success stories

CPCRI

Bio-management of coconut black headed caterpillar, *Opisina arenosella* Walker through timely release of parasitoids.

The black headed caterpillar, *Opisina arenosella*, is a major pest of coconut distributed in almost all coconut growing tracts across the country. Extensive feeding of caterpillars causes a crop loss of 45.4% in terms of nut yield in addition to rendering the fronds unsuitable for that ching and other purposes. Area-wide field validations on biological suppression of coconut black headed caterpillar through release of stage-specific parasitoids *viz.*, *Goniozus nephantidis* and *Bracon brevicornis* @ 20 parasitoids/palm at monthly intervals for a period of eight months in various locations of coastal Kerala and south Karnataka by ICAR-CPCRI covering 1500 ha led to good recovery of palms in a period of 18 months with enhanced nut yield as well.

Bio-suppression of Rugose Spiralling Whitefly on Coconut

Rugose spiralling whitefly (RSW), *Aleurodicus rugioperculatus* Martin is the recently emerged invasive pest on coconut palm introduced in India during 2016. RSW rapidly spread

across the Peninsular India (Kerala, Tamil Nadu, Karnataka, Andhra Pradesh, and Goa) and other coconut growing tracts in the country as Pan India pest of coconut palm. Pesticide holiday at tandem with conservation biological control using *E. guadeloupae* as well as bio-scavenging by Leiochrinid beetles, *L. nilgirianus* adopted in Kayamkulam, Kerala could reduce the pest incidence (*A. rugioperculatus*) to more than 90% and bio-cleansing of palms to the tune of 95% in a period of six to eight months without using any insecticide in the system. In this conservation tactics, natural defenders, scavenger beetles and the pollinators are conserved in the coconut system which enhanced ecosystem vitality and delivered economic benefits to the tune of 1760 crore rupees.

DrYSRHU

The management strategies of spraying of Azadirachtin 1% EC, installation of yellow sticky traps, conservation biological control using *E. guadeloupae* coupled with need based releases of predatory insect *A. astur* and utilizing entomopathogenic fungi *I. fumasorosea* NBAIR pfu 5 as another spraying option offered an integrated package for checking RSW. The large scale demonstrations and assured supply of bio agents along with awareness campaigns andprogrammes carried out in collaboration with, Rytubharosakendras, Department of Horticulture showed a tremendous impact at grass root level in effectively managing RSW in coconut and oil palm plantations.

GBPUAT

Large scale demonstrations of biocontrol agents against plant diseases, at farmers' field covering an area of 1659 ha were laid out on rice, tomato, chickpea, and pea crops, in the districts of U.S.Nagar & Nainital.More than 93 quintals of quality biocontrol agents mass produced in Biocontrol Lab at Pantnagar was distributed to 2800 farmers. Through the adoption of biocontrol technologies, farmers were able to reduce their cost of production and minimized losses due to diseases resulting in increased benefit-cost ratio and a healthy crop.

PAU

Biological control of sugarcane borers:

The augmentative releases of egg parasitoids, *Trichogramma chilonis* and *T. japonicum* have been recommended for eco-friendly management of early shoot borer, top borer, and stalk borer in Punjab. The technology regarding mass production of *Corcyra* eggs and tricho-cards has been transferred to different sugar mills in the state. These sugar mills are successfully running biocontrol laboratories under the technical guidance of PAU centre. PAU is acting as nodal agency for transfer of technical expertise as well as core point for resources like nucleus culture of bioagents and training to staff of biocontrol laboratories in the state. The proven biocontrol technology was disseminated on large scale at farmers' field in collaboration with sugar mills, KVKs and FASCs. The adoption of biocontrol technology involving time specific multiple releases of Trichogrammatids resulted in noteworthy impact with respect to area coverage, lowering input cost (3800 to 4600 per ha), reduction in incidence of sugarcane borers (52.4 to 58.7 %) and gave higher yield (10-15 % increase) with additional economic benefits of Rs. 16205 to 19774/- per ha during different years to sugarcane growers.

Biointensive pest management in organic rice:

BIPM technology involving augmentative release of *Trichogramma chilonis* and *T. japonicum* each @ 1,00,000 parasitoids/ ha, 5-6 times at weekly interval starting from 30 DAT for stem borers and leaf folder was disseminated in organic basmati rice on large scale at farmers' field in various districts of Punjab in collaboration with KVKs and FASCs. The adoption of BIPM technology has resulted in significant impact with respect to increase in area and reduction in the incidence of stem borers (50 to 55 %) and leaf folder (55 to 60 %). Grain yield in BIPM fields was also significantly more in BIPM fields as compared to untreated control. Consequently, the yield increase (11-14 %) in BIPM fields gave additional monetary returns of Rs. 7070 to 8200/- per ha to organic rice growers.

TNAU

BIPM module*ie., Encarsia guadeloupae* natural conservation + release of *Apertochrysaa astur* eggs @ 1000/ha + Yellow sticky traps @ 20/ha. has been adopted by coconut farmers in TamilNadu. In Chinnappampalayam, Anaimalai Block, Coimbatore Dt., there was 80.00 per cent reduction in the population of Rugose spiralling whiteflies (RSW) in BIPM field, while in control plot there was 60.00 per cent reduction in RSW population.

For the management of brinjal fruit and shoot borer, BIPM module (Azadirachtin 1500 ppm @ 2ml/lit (one round of spray) + *Lecanium lecanii* (one round of spray) + *Trichogramma pretiosum* (8 releases) + Pheromone traps @20/ha + Cowpea as bund crop) and got the marketable fruit yield of 12140 Kg/ha in BIPM plots which was 30.00 per cent more yield than the control plot.

AAU, Anand

IPM module for the effective management of white grub in groundnut:

In the year 2018-19 and 2019-20, in association with NGOs (Triveni Kalyan Foundation & Gram NirmanSamaj, Mahuva, Bhavnagar District, Gujarat) functioning under the aegis of Pidilite Industries, Mumbai adopted 100 ha area of groundnut to demonstrate bioagent based IPM module to curb white grub menace. Large scale demonstration was carried out at cluster level in farmers' fields of Gundarna and Kojnli Village, Mahuva Taluka, Bhavnagar, Gujarat. Significant difference was observed between bioagent based IPM module and farmers' practice. The demonstration module revealed 73% reduction in pest incidence and 46% higher yield ensuring net profit of approx. Rs. 20,000/ ha compared to farmers' practice where sole application of chemical insecticide was noticed. We conclude that the large-scale adoption of bioagent based IPM module is promising for the effective management of white grub in groundnut.

Bio-intensive management of mango hopper

The large-scale demonstration of bio-intensive management of mango hopper was conducted at five different locations across the Gujarat state. The BIPM module comprising microbial biopesticide *Metarhizium anisopliae* (NBAIR Ma-4) 1% WP.was found effective in reducing the mango hopper population.

KAU, Thrissur BIPM in rice

The large-scale validation of BIPM technologies in rice was carried out over an area of 100, 150,150, 200 and 240 hectares during 2017-18, 2018-19, 2019-20, 2020-21 and 2021-22 respectively at farmers' fields. The IPM practices comprised of Pseudomonas fluorescens @ 10 g/kg of seed, followed by five releases of Trichogramma japonicum and Trichogramma chilons @ 1 lakh/ha starting from 10 days after transplanting or 30 days after sowing, and application of *Beauveria bassiana* @ 1x10⁸ spores/ml. Adoption of BIPM practices led to substantial reduction in infestation by major pests. The mean infestation by stem borer and leaf folder in BIPM plots was 65 and 38 per cent lower as compared to non BIPM plots. The yield obtained from IPM plots was 23 % more than that obtained from non IPM plots. The increased yield as well as reduced cost resulted in an increase in profit by Rs.46705/ha. The cost benefit ratio, at 2.18 was almost double for IPM fields as compared to 1.40 for non IPM fields. The paddy harvested from the BIPM plots in Palakkad district is being processed and sold as "Nira" brand of safe to eat rice under the supervision of Panchayat and Kishibhavan. Encouraged by the results of the large-scale validation trials over the last two years, Alathur Grama Panchayat of Palakkad district sanctioned a project for establishment of a mass production unit for Trichogramma egg cards. The unit, supported by Thrissur centre and manned by rural women (Kudumbasree members), successfully produce, and distribute Trichocards among the farmers.

S	S AICRP M		Macrobial		Microbial	Quan	Area	Crops
	centre	No.	Other	ity	Biopesticides	tity	cove	
Ν		Tric	Predators	(Nos.)		(Kgs)	red	
0		ho					(ha)	
		Car						
		ds						
	PAU,	8614	Chrysoperla	1,50,0	Beauveria	150	2017	Sugarca
	Ludhia	0	eggs	00	bassinana		8	ne, Rice
	na					150		and
			Bracon adults	1,25,0	Metarhiziuman			Maize
				00	isopliae			
			Blaptostethus					
			adults	25000				
			Telenomus	15000				
			adults					
				12000				
			Chelonus					

XXXVIII. Quantity of bioagents produced and area covered

r		1	Γ_					~
	CPCRI		Bracon	21,690	Metarhiziumm	1850	527	Coconut
			brevicornis		ajus			
				18,250		1560		
			Goniozus		Oryctes	(nos.)		
			nephantidis		rhinoceros			
					nudivirus			
						1200		
						0		
					EPN cadaver	(nos.)		
					capsules	× ,		
	NCIP				Trichoderma	100	150	Chickpe
	М			_	harzianum			a
								Rice
								THE
	UBKV,		Pheromone traps		Trichoderma	40	120	Tea, rice,
	Pundiba	30	50 pieces/month		harzianum			maize,
	ri							vegetables
	GBPU				Trichoderma	92,71	1659	Rice,
	AT,				harzianum	0		Tomato,
	Pantnag							Chickpe
	ar							a and
								Pea
	KAU	170		3829		5573	207	Rice,
	Vellaya						247	cardamo
	ni						300	m ,
							285	vegetabl
								es,
								banana,
								mango,
								coconut
	KAU,	954				1165	1358	Rice,
	Kumara					3		Vegetab
	kom							les, fruit
								plants.S
								pices
1	1	1	1	1	1	1	1	r

	SKUA	440	Blaptostethus	1,50,0	EPN	20,00	22	Apple,
	ST-K		pallescens	00		000		cabbage
								. cherry
			Blaptostethus	1.50.0				and cole
			nallescens	00				crons
			punescens	00				crops
			Blantostethus	1 50 0				
			nallasaans	1,50,0				
			pullescens	00				
			Rlantostethus	2 00 0				
			nallescens	2,00,0				
			punescens	00				
			Blaptostethus	2.00.0				
			pallescens	00				
			punceccus	00				
			Blaptostethus	1.60.0				
			pallescens	00				
			pullebeens	00				
	PJTSA	330			-		132	Rice.
	U							maize.
								cotton.
								vegetabl
								es
								03
	CAU-				(150 kg) 75 kg		30	Paddy.
	Pasigha				each talc based			Potato.
	t				Metarhiziuman			Crucifer
					<i>isopliae</i> and			s. Chilli
					Reguveria			Tomato
					bassiana			and
					(2022)			Maize
	MPKV	3118		13747	13081		2103	Sugarca
		5110		13/4/	15001		2105	ne
	, 1 unc							Paddy
								Lustard
								opplo
								apple, Grone
								Domos
								Poinegr
								anate,
								Vegetab
								les
								grape
1								and

	1		1		1		
							amize
MPUA			5726	SpliNPV	26		
Τ,				HearNPV	20		
Udaipu							
r				Trichoderma	1620		
1				viridae	1020		
					5		
				Beauveria			
				bassiana	70		
					19		
				Metarrhiziuma			
				nisopliae			
				1			
 TNAU	3477	Acerophagus,				3067	Coconut
		Goniozus and				0	
		Bracon				Ŭ	
		Drucon	87,400				Cassava
			,				,
		Chrysoperla,					Brinjal,
		Apertochrysa					Tomato,
		and					Bhendi,
		Cryptolemus	1,10,48				Cotton
			,000				Grapes
							Doddy
							Paddy,
							Jasmine,
							Orname
							ntals
							Mulberr
							v
 SKIIV					8302		5
SKUA					8302		
51-							
 Jammu							
OUAT	1316	*Australian				1448	Sugarca
	9	lady bird					ne,
		beetles and C					Rice
							Driniol
		comeu					Dillijai
							and
							Maize
ANGR	3435				3555	7582	Rice,
AU,	2						Maize,
RARS.							Sugarca
Anakan							ne
alle							Vocatal
ane							vegetab
							les,
							Ginger,

								Coconut
-	AAU,A	2737	(Chrysoperla	5349		3621	7559	Paddy,
	nand	5	zastrowi			0		Pigeon
			sillemi Larvae					pea,
								Maize,
			(Chrysoperla	23755				Tomato,
			zastrowi					Chilli, <i>Bt</i>
			sillemi larvae)	11810				cotton,
								Cabbage
			(Mallada sp.	45				, Mango,
			larvae)					Okra,
				232				Vegetab
			(Mallada sp					le crops,
			Adults)	50(1				Banana,
			Comptolanom	5961				Grounan
			crypiolaemus					ul
			(Larvae)					
			(Laivae)					
			Reduviid bugs					
	AAU,	2725	Neochetinaeic			1950	335	Rice,
	Jorhat		hhorniae, N.					cabbage
			bruchi,					, brinjal,
			Coccinella					sugarca
			transversalis,					ne,
			С,					tomato,
			septempuctata					ginger,
			were					turmeric
			maintained in					and
			laboratory for					other
			practical					vegetabl
			classes,					es
			training,					
			and ELD					
			allu ELP					
		24	Predatory	62500	Metarhizium	22.00	230	
	YSPU	- '	mite.	00	anisoplia	0	230	
	HF,		(Neoseiulus					
	Solan		longispinosus)					
1 I			10112100110001101					

IGKV	4351	Bracon cards	1820			120	Rice,
		Zygogramma	10,902				Maize,
		beetles	2695				Chickpe
		Coccinellid	2017				a,
		beetle					Cowpea
		Reduviid bugs					, Okra,
							Parthen
							ium
							weed
KAU,	2728			1128796		1395	Rice,
Thrissu	2					5	vegetabl
r							es,
							coffee,
							tea,
							banana,
							cardamo
							m etc.
UAHS				Trichoderma	4192	4263	
				Pseudomonas	1		
				fluorescens	2664		
				Bacillus	5		
				megaterium			
				(PSB)	1092		
				VAM (Glomus	7		
				mossae)	2022		
				Paceliomyces	2823		
				lilacinus	400		
				Metarnizium	480		
				anisopiiae Bacillus	8003		
				Bacillus	2		
				SUDIIIIS	745		
Total			10 050		143	03/18	
TUtal			228			0	
	2096		,220				
	63						
					2370		
					668		

XXXIX. Strategic plan (2022-2027)

ICAR-CPCRI, Kayamkulam

- Conditioning bioagents to abiotic stress and evolve potent defenders (Parasitoids/Entomopathogens) to mitigate climate change.
- Environmentally responsible farming approaches through heterogeneous land scaping for pest regression and biodiversity conservation
- Development of pest forecasting models for effective prediction and diminution of pestilence outbreak
- Pest surveillance and evolving sensitive digital devices for pest diagnosis and biosuppression using IoT technology.
- Sensitizing potential invasive pests and develop emergency preparedness module

Dr. YSRHU, HRS, Ambajipeta.

- Commercialization and transfer of biocontrol technology to the prospective private firms
- Production and supply of coccinellid predators to farmers
- Studies on alternate factitious hosts (other than *Corcyra z. sillami*) suitable for bioagents culture maintenance and multiplication
- Establishment of bio control labs in villages earmarked for organic farming and training the rural youth for self employment
- Survey and identification of bio agents for invasive and emerging pest diseases
- Documentation on rate of establishment of bioagents after field releases especially under out break conditions
- Identification of potential native strains for management of coconut and cocoa diseases

GBPUAT, Pantnagar

- Screening of new promising fungal, bacterial isolates and developing new consortia of microbial antagonists against the important diseases of Rice, tomato, Chickpea and Peaunder glasshouse and Experimental field conditions.
- Large scale training & demonstration of Bio control technology at farmers' field.
- Development of the repository of tested microbial Biocontrol agents against the Pathogens of economically important crops of the region

ICAR-IIMR, Hyderabad

• Large area multilocation trial (2 centers) for management of *Spodoptera frugiperda* in Rabi sorghum

ICAR-IIHR, Hesaraghatta

- Survey and surveillance of invasive pests
- Mass production of *Trichogramma chilonis* and *Cryptoleamus montrouzeri*
- Demonstration of IPM for Brinjal shoot and fruit borer in farmers field

• Trainings on biological control of horticultural pests to the farmers and state department officials.

ICAR-IIRR, Hyedrabad

- Demonstration of bio control-based techniques in farmers fields
- Testing and validating of bio agents developed through AICRP BC and NBAIR at IIRR and through the AICRP on rice system.
- Collection and molecular characterization of natural enemies from rice fields in collaboration with NBAIR.

KAU, Kumarakom

- Demonstration of the bioefficacy of *Trichoderma asperullum* KAU strain application for the management of *Fusarium* wilt in cowpea
- Demonstration of bio-intensive management practices for the management of pests (fruit borer/ sucking pests) of Brinjal
- Evaluation of entomopathogens against sucking pests of cowpea
- Evaluation of microbial antagonists for the management of ginger rhizome rot
- Scaling up the production distribution of *Beauveria bassiana*, *Lecanicillium lecanii*, arbuscular mycorhizal fungi, Trichocards (against rice leaf folder and stem borer) and pheromone traps (for fruit flies in vegetables and mango), and mass production of entomopathogens like *Purpureocillium lilacinum* and *Metarhizium anisopliae* for the benefit of farmers of the district.

KAU, Vellayani

- Field validation of improved formulations of biopesticides at multiple locations.
- Registration of indigenous isolates of KAU L. saksena and B. bassiana
- Initiation of TSP in the tribal areas of Trivandrum and Kollam districts
- Establishing production facilities for *Chrysoperla zastrovi sellami* for cardamom plantations and *Apertochrysa* sp for coconut plantations.
- Scaling up the production targets of Trichocards and biopesticides.

ICAR-NCIPM, New Delhi

• Large-scale demonstration of bio-intensive pest management on rice.

UBKV, Pundibari

- Creating awareness among the farmers and adopting villages for the promotion of biocontrol
- Scaling up the proicrobial agents including the isolate one local strain of *Beauveria* bassiana
- Exploratory survey on the biodiversity of Sub-Himalayan or Terai zone of West Bengal, identification and elucidate their role in biocontrol of crop pests.

PAU, Ludhiana

- Documentation of arthropod and microbial natural enemies in various agro-climatic zones of Punjab
- Mass production of potential bioagents (macrobials and microbials) and promotion of proven biocontrol technologies on large scale at farmers' fields
- Identification of new and potent local isolates of microbials for pest management

PJTSAU, Hyderabad

- Mass production and Scalling up of Trichocards
- To cater the need of the marginal & small farmers of the State.
- Upscaling of production levels and commercialisation of predator, Brown lace wing for the IPM tactics or natural/organic farming for Oil palm and other crops.

CAU, Pasighat

- Large scale evaluations and demonstration of BIPM module for the management of pests of cereals and vegetables
- Evaluation of microbial antagonists for the management of ginger rhizome rot
- Production and distribution of Biocontrol agents to the farmers

MPKV, Pune

- Maintenance of nucleus cultures of parasitoids, predators and entomopathogenes as repository for their supply to Biocontrol Units in the state as well as Country wide.
- Mass production, large scale demonstrations and supply of bioagents to the end users.
- Organization of demonstrations and validation of BIPM practices against important pests in crops like sugarcane, maize, pigeon pea, vegetables (tomato, brinjal, okra, cabbage) and fruit crops (mango, grapes, pomegranate, custard apple and papaya).
- Organization of farmers training programmes, mass production of bioagents.
- Isolation, characterization and evaluation of potential entomopathogens against sucking pests and tissue borers in important crops.
- Development and evaluation of pesticide tolerant strains of bioagents for polyhouse crop pests.

MPUAT, Udaipur

- Production and popularization of various bioagents for vegetable crops
- Conducting large scale demonstrations and awareness programmes.
- Survey and surveillance for the biodiversity of natural enemies invasive species
- Validation of biocontrol agents and developing Package of practices recommendations.

TNAU, Coimbatore

• Surveillance for pest outbreak and alien invasive pests

- Evaluation of efficacy of entomofungal pathogens and botanicals for the management of sucking pests in cotton, Onion thrips, spotted pod borerin green gram, tobacco caterpillar in ground nut and leaf miner
- Evaluation of Bacillus subtilis TNAU BS1 against major diseases of rice
- Field evaluation of parasitoids and predators for the management of cassava mealybug
- Large scale evaluation of biointensive management of pink bollworm on *Bt* cotton
- Demonstration of bio intensive management practices for the management of pests (fruit borer/ sucking pests) of Brinjal
- Large scale suppression of coconut rugose spiralling whitefly using parasitoid *Encarsia guadeloupae* and *Apertochyrsa astur*
- Training to farmers, rural youths, students, self help groups, NGOs, entrepreneurs etc. on biocontrol agents for the management of pest and diseases of crops

OUAT, Bubaneshwar

- Large scale demonstrations of biocontrol modulesagainst pests of rice, sugarcane, maize and Brinjal
- Production of Bioagents and off campus Training programmes for farmers and Extension functionaries
- Survey of alien invasive pests and other pestsof crops of Odisha

NIPHM, Hyedrabad

- Conducting training program in the area for biological control for various stake holders.
- Maintenance of biocontrol agents for training and demonstration purposes

ANGRAU, Hyedrabad

- Development of ecofriendly pest and disease management technologies suitable for organic cultivation in major agricultural and horticultural crops of Andhra Pradesh
- Promotion of Biocontrol Technologies by conducting more number of Large scale demonstrations, training programmes, field visits covering major crop areas
- Validation of virulent strains of entomopathogens for developing effective pest management strategies under changing climatic conditions.
- Studies on integration of Biocontrol with chemical management for sustainable pest management.

AAU, Anand

- Generation of bio-efficacy and toxicology data as per CIBRC norms for registration and commercialization of effective local strains of microbial biopesticides
- Development of abiotic stress tolerant strains of bioagents
- Development of improved formulations of microbial biopesticides
- Exploration of native mycorrhizal fungus for the biological control of crop pests and diseases

- Development of inter-institutional linkages for research and development e.g., CABI, ICAR and CSIR institutes
- Focused research/extension activities on emerging pest and diseases of the region.
- Human resource development programmes in the area of biologicals for plant health management

DrYSRHU, Tirupathi

- Evaluation of entomopathogens against sucking insect pests (Citrus psylla, aphids, black fly and scales) of citrus
- Promotion of non- chemical management strategies (sex pheromone traps) for the management of citrus leaf miner in nursery and young orchards
- Testing the compatibility of entomopathogens with botanicals for developing management methods against citrus thrips, mites, scales and leaf miner.

AAU, Jorhat

- Develop suitable technologies for insect pests and disease management for major crops of Assam under natural farming.
- Exploration of locally available parasitoids predators and microbial agents for crops pests and diseases management
- Development of plant-based products for management of insect pests and diseases
- Development of para pheromone based lure as insect attractant and nano bioformulation for smart delivery and effective management of insect pest
- Technology showcasing in Tribal dominant district of Assam
- Development of model village and local biocontrol experts/ biocontrol Ambassador master trainers for at least one in each district.
- Develop at least 5 entrepreneur in biopesticide sector
- Training on biocontrol for various stakeholders.

YSPUHF, Solan

- To harness and exploit biodiversity of local natural enemies for bio-control of crop pests in various agro-ecological zones of HP
- Monitoring the invasive crop pests and search for their natural enemies
- Conservation of biocontrol agents by adopting natural farming practices.
- Evaluation of macrobials and microbials for the management of insect-pests of fruit, vegetables and floriculture crops
- Mass production of *Trichogramma* sp., *Metarhizium anisopliae* and predatory mite.
- Demonstration of effective biocontrol agents in farmers' field.

ICAR-NRRI, Cuttack

- Identifying local microbial isolates to manage insect pests and diseases of rice
- Validating the promising strains of microbials against insect pests and diseases of rice

• Evaluating identified isolate at multi-location and best performing isolates will be promoted for the large scale demonstration

KAU, Thrissur

- Bioprospecting for native entomopathogenic microbes and macrobials for the benefit of farmers.
- Evaluation of *Bacillus thuringiensis* isolates from Western Ghats against major pests of crops in Kerala
- Developing novel formulations and microbial consortia of entomopathogens
- Expand the number of bioagents maintained in the centre
- Monitoring the invasion of invasive alien pests
- To expand cumulative area under BIPM validation to 1200 ha.
- Registration of Beauveria bassiana local isolate against rice gundhi bug
- Production & distribution of Bio agents *viz.Trichogramma*, *Bracon*, Reduviid bugs, Coccinellid beetles & *Zygogramma* beetle at different centers of KVKs comes under IGKV.
- BIPM trials conducted in Chickpea & Okra.